首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
滩地的淤积层分布记录着以往漫滩洪水的特征,即反映漫滩洪水的量级、频率和持续时间等,同时河漫滩也是预估河流泥沙、洪水灾害防治和湿地生态系统保护等的重要组成部分。根据黄河下游水文年鉴资料,分析滩地的淤积与漫滩洪水的定量关系,为未来河流泥沙预估提供依据。经分析得到大漫滩洪水在来沙系数S/Q<0.030 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。当S/Q<0.030 kg·s/m6时,大漫滩洪水滩地的淤积量主要与漫滩系数Qmax/Qp、上滩水量W0和含沙量S有关;大漫滩洪水的主槽冲刷量则除了与洪水期水量W和沙量Ws有关外,还与滩地的淤积量有关。一般漫滩洪水,当来沙系数S/Q<0.023 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。一般漫滩洪水主槽冲刷量与来沙系数S/Q和洪水期水量W有关,而滩地淤积量仅与含沙量S有关。黄河下游漫滩洪水滩地的淤积和主槽的冲刷主要发生在孙口以上河段,而孙口以下河段主槽冲刷和滩地淤积量均较少。  相似文献   

2.
A variety of methids have been used to document contemporary rates of overbank sedimentation along an 11 km reach of the floodplain of the River Culm in Devon, UK. These have included measurements of the conveyance loss of suspended sediment between upstream and downstream measuring stations, the use of sediment traps, and the application of caesium-137 measurements to estimate the rate of accumulation of fine sediment over the past 30 years. The resultant data point to sedimentation rates typically of the order of 1500 g m–2 year–1 or 1.5 mm year–1. Values in excess of 15000 g m–2 year–1 or 15 mm year–1 have been documented in closed depressions and in backwater embayments close to the channel, whereas minimal deposition and even scour may occur along those areas that function as secondary channels during floodplain inundation.  相似文献   

3.
通过对乌伦古湖2个沉积柱样的210Pb和137Cs剖面的观测,运用210Pb过剩法和137Cs时标法估算了近几十年来的平均沉积速率。研究结果表明:210Pb过剩法的CRS模式测定的沉积速率的变化范围为0.018~0.071 g/(cm2·a),137Cs时标法测定沉积速率的变化范围为0.034~0060 g/(cm2·a),两者具有较高的一致性。20世纪60年代以前,人类活动对本区影响相对较小,湖泊的沉积速率主要受自然因素的影响;20世纪60年代以后,随着乌伦古河中、下游农业的发展和调水工程的实现,人类活动逐渐成为主导湖泊演化的因素,从而影响乌伦古湖沉积速率。  相似文献   

4.
Facies analysis suggests that the productive Westphalian (Upper Carboniferous) Coal Measures of the Durham coalfield in NE England were deposited on an upper delta plain. Distributary channels crossed the plain and were separated by shallow lakes. Detailed examination of largely three-dimensional exposures has revealed the existence of nine laterally and vertically interrelated fluviolacustrine and lacustrine lithofacies. Facies 1 and 2 are interpreted as overbank deposits of distributary channels, Facies 3–5 are regarded as deposits of crevasse splay/minor delta systems, and Facies 6–9 are considered to have formed in areas of diminished clastic sediment supply. Facies 4 and 5 are volumetrically the most important. Facies 3–9 are interpreted as representing progressively less energetic conditions of sedimentation across a lake, from the point of entry of a crevasse splay/minor delta system. The distribution and characteristics of the lithofacies indicate that the upper delta plain lakes were completely or effectively enclosed, up to about 8m deep and had wave fetches of the order of 20 km. These lakes were intermittently infilled by the crevasse-initiated, minor delta systems and, to a relatively minor extent, by overbank flood sediment from channels. Infilled lake surfaces became platforms for plant colonization and peat accumulation. The three dimensional relationships of the various lithofacies provide a model of Coal Measure lacustrine sedimentation, which may have wider implications in extending the model of interdistributary genesis and infilling proposed by Elliott, particularly with respect to detailed facies relationships and to the balance between overbank and crevasse-derived sediment.  相似文献   

5.
《Applied Geochemistry》2003,18(2):195-220
Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≌0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants.  相似文献   

6.
Coastal barriers provide sheltered, low-energy settings for fine-grained sediment deposition and retention, although the process of back-barrier infilling and how tidal-channel connectivity impacts this process is not well-understood. Understanding how back-barrier environments infill and evolve is necessary to predict how they will respond to future changes in sea-level and sediment supply. With this motivation, in situ observations and sedimentary signatures from an Amazonian tidal-channel system are interpreted to create a conceptual model of morphological evolution in a macrotidal back-barrier environment that is rich in fine-grained sediment, vegetated by mangroves and incised by tidal channels with multiple outlets. Results indicate that within a high-connectivity back-barrier channel, tidal processes dominate sedimentation and morphological development. Sediment cores (<60 cm) exhibited millimetre-scale tidalites composed of sand and mud. High-connectivity channels allow tidal propagation from multiple inlets, and in this case, the converging flood waves promote delivery of sediment fluxing through the system to the mangrove flats in the convergence zone. Sediment preferentially deposits in regions with adequate accommodation space and dense vegetation, and in these zones, sediment grain size is slightly finer than that transiting through the system. The greatest sediment-accumulation rates (3 to 4 cm yr−1), calculated from steady-state 210Pb profiles, were found in the convergence zone near the mangrove-channel edge. As tidal flats aggrade vertically and prograde into the channels, accommodation space diminishes. In effect, the channel’s narrowest stretch is expected to migrate along the path of net-sediment flux towards regions with more accommodation space until it reaches the tidal-convergence zone. The location of recent preferential infilling is evidenced by relatively rapid sediment-accumulation rates, finer sediment and significant clustering of small secondary tidal channels. These findings shed light on how sediment transported through vegetated back-barrier environments is ultimately preserved and how evidence preserved in surface morphology and the geological record can be interpreted.  相似文献   

7.
This study examines the morphology, sedimentology and genesis of the point bars and floodplain of the Beatton River. The formation of point bars occurs in distinct stages. An initial point bar platform composed mainly of coarse sediment is formed adjacent to the convex bank of a migrating meander bend, and is the base on which develops a single scroll bar of fine traction and suspended load. With continued sedimentation, the scroll bar grows, eventually supporting vegetation and becoming a floodplain ridge. Scroll bars form with greatest size and frequency in rapidly migrating bends, and the shape of the meander bend appears to determine both the location of the initial bar deposit, and its direction of growth up or downstream. Approximately one-half of the floodplain sediment is derived from suspended load, and the initiation of a scroll bar appears to be due to excessive deposition of suspended load in a zone of flow separation over a point bar platform. The critical flow condition for the initiation of a scroll bar does not occur with the same recurrence interval on different shaped meander bends, however, the average recurrence interval within the study reach is approximately every 30 years. Sedimentation rates on point bars and on the floodplain indicate two relatively distinct stages of floodplain alluviation. The most rapid is for surfaces less than 50 years old, although sediment accumulation still persists on surfaces up to 250 years in age. Although frequently flooded, surfaces older than this accumulate very little sediment. Despite 2–3 m of overbank deposition, the amplitude of floodplain ridges is maintained by secondary currents which sweep sediment from the swales towards the ridge crests.  相似文献   

8.
The 1800-km2 Okavango alluvial fan of northern Botswana represents an unusual depositional setting in which peat-forming perennial swamps (6000 km2) occur in a region of aeolian and semi-arid sedimentation within an incipient graben of the East African Rift. A channel system distributes water and sediment on the fan surface but cannot contain seasonal flood water, which spreads laterally from the channels through permeable channel margins, sustaining the flanking swamps. All sediment introduced is deposited on the fan. A detailed study of sediment movement and associated hydrological conditions in the channels was undertaken to examine sediment dispersal. Bedload greatly exceeds suspended load (at least by a factor of four). Vegetation and peat form permeable levees which confine the channels. In the upper reaches, two-way exchange of water occurs between channel and swamp depending on the season, but on the fan itself, channels lose water to the swamp. Bedload measurements reveal that the channel system is in a state of grade disequilibrium, with interspersed depositional and erosional reaches. Deposition of most of the incoming bedload occurs on the upper portion of the fan in a meandering and anastomosed channel system, but on the midfan, deposition of bedload occurs by channel-bed aggradation, at a rate of up to 5 cm yr–1. Further down slope, the channel enters a large lake where all remaining bedload is deposited. The presently observed sedimentation patterns may be due to a recent disturbance of the fluvial system, either by avulsion or neotectonics.  相似文献   

9.
Dams and reservoirs are often efficient sediment traps, and conventional wisdom holds that fluvial sediment supplies are reduced well downstream. However, there are reasons to question the extent to which fluvial and alluvial sediment supplies are reduced more than a few kilometers downstream of dams. Sedimentation in bottomlands of Loco Bayou, east Texas, was investigated at a site less than 16 km downstream of Loco Dam and Lake Nacogdoches, which controls 86% of the 265-km2 drainage area. Turbidity levels are generally as high or higher than those on Loco Bayou upstream of the lake. Sedimentation rates on the lower floodplain since the dam was completed are 11 mm year-1 or more. This rate is high enough to suggest that the dam has no effect on sediment supplies 16 km downstream. The spatial pattern of sedimentation and the vegetation distribution suggest that the elevation and frequency of flooding, not fluvial sediment availability, are the critical factors in determining sediment supplies to these floodplains.  相似文献   

10.
底流在陆缘深水环境下广泛存在,可对深水沉积过程及砂体分布产生重要影响。前人对重力流与底流的交互作用机制及沉积产物开展了大量研究,但目前有关底流改造型的海底扇储层构型模式仍然研究不够深入。东非鲁伍马盆地是当前重力流—底流交互作用研究的热点地区,文中以其代表性的下始新统海底扇水道体系为例,综合岩心、测井及三维地震资料开展储层构型精细表征,建立重力流—底流交互作用下的海底扇水道体系构型模式。研究表明,目标水道体系内部发育水道、溢岸及朵叶3种构型要素,其中水道可分为水道复合体、单一水道及其内部不同级次的构型单元。底流对细粒物质的搬运可形成非对称的溢岸沉积,导致水道复合体之间呈逆底流侧向迁移叠置样式,其间泥岩隔层容易保存; 单一水道之间呈顺水道纵向迁移或逆底流侧向迁移样式,其中纵向迁移部位水道切叠连通,而侧向迁移部位容易保存泥质侧向隔挡体。受重力流沉积演化的影响,单一水道内部充填由砂泥交互型逐渐演化为富砂型,且在水道弯曲段的轴部砂体最为发育。  相似文献   

11.
Differences in the nature and quantity of sediment filling oxbow lakes have significant implications for the evolution of meandering rivers and the development of floodplains, influencing rates of meander migration and the valley width over which migration takes place. In an effort to identify the controls on the alluviation of oxbow lakes by coarse bed material, this study examined the sedimentary records stored within oxbow lakes of the Sacramento River of California, USA, and found that the volume of gravel in storage correlated negatively with the diversion angle separating flow between the river channel and the entrance into each lake. A method was devised for estimating the original channel bathymetry of the studied lakes and for modelling the hydraulic and sediment‐transport effects of the diversion angle within channels recently abandoned by meander cut‐off. The diversion angle determines the width of a flow separation within the abandoned‐channel entrance, reducing the discharge diverted from the river channel and thus limiting the ability of the abandoned channel to transport bed material. Aggradation rates are faster within entrances to abandoned channels with high diversion angles, resulting in the rapid isolation of lakes that store only a small volume of coarse‐grained sediment. Aggradation rates are slower within channel entrances where diversion angles are low, resulting in the slow transitioning of such channels into oxbow lakes with a larger and more extensive accumulation of coarse‐grained sediment. These findings compare well with observations in other natural settings and the mechanism which is described for the control of the diversion may explain why some oxbow lakes remain as open‐water environments for centuries, whereas others are filled completely within decades of cut‐off.  相似文献   

12.
In the Patía River delta, the best-developed delta on the western margin of South America, a major water diversion started in 1972. The diversion of the Patía flow to the Sanquianga River, the latter a small stream draining internal lakes from the Pacific lowlands, shifted the active delta plain from the south to the north and changed the northern estuarine system into an active delta plain. The Sanquianga Mangrove National Park, a mangrove reserve measuring 800 km2, lies in this former estuary, where major hydrologic and sedimentation changes are occurring. Overall, major environmental consequences of this discharge diversion in terms of geomorphic changes along distributary channels and ecological impacts on mangrove ecosystems are evidenced by: (1) distributary channel accretion by operating processes such as sedimentation, overbank flow, increasing width of levees, sedimentation in crevasses, interdistributary channel fill, and colonization of pioneer mangrove; (2) freshening conditions in the Sanquianga distributary channel, a hydrologic change that has shifted the upper estuarine region (salinity <1%) downstream; (3) downstream advance of freshwater vegetation, which is invading channel banks in the lower and mixing estuarine zones; (4) die-off of approximately 5200 ha of mangrove near the delta apex at Bocas de Satinga, where the highest sediment accumulation rates occur; and (5) recurrent periods of mangrove defoliation due to a worm plague. Further analyses indicate strong mangrove erosion along transgressive barrier islands on the former delta plain. Here tectonic-induced subsidence, relative sea-level rise, and sediment starving conditions due to the channel diversion, are the main causes of the observed retreating conditions of mangrove communities. Our data also indicate that the Patía River has the highest sediment load (27 × 106 t yr−1) and basin-wide sediment yield (1500 t km−2 yr−1) on the west coast of South America. Erosion rates from the Patía catchment have been more pronounced during the decades of 1970–1980 and 1990–2000, as a result of land degradation and deforestation. The high sediment and freshwater inputs into the mangrove ecosystem create additional stress (both at ongoing background levels and, occasionally, at dramatic levels), which may periodically push local environmental parameters beyond the thresholds for mangrove survival. The future environmental state of the Sanquianga Mangrove National Reserve deserves more scientific and governmental attention.  相似文献   

13.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

14.
论长江流域河湖体系演化与洪灾防治   总被引:1,自引:0,他引:1  
长江上游剥蚀沉积物通量是影响长江流域河湖体系平衡的最重要因素。近几十年来,不适人为的地质作用已严重影响并打破了原有的长江流域河湖体系的沉积-搬运平衡系统,主要表现在:①上游自然环境的破坏,使河湖沉积体系沉积物通量大量增加;②中下游围湖造田和不适当的人为河湖治理工程(如裁弯取直、送沙出湖等),改变了长江流域洪沙的自然分配平衡。研究表明,洞庭湖及鄱阳湖为现代构造沉降型补偿平衡盆地,沉降速率等于或略大于目前盆地范围内的沉积物平均淤积速率,具备为长江分洪滞淤的潜在沉积可容空间。长江流域河湖体系沉积平衡的恢复治理,应包括以下几个方面的措施:①整治上游,减少水土流失,减少或抑制整个河湖体系沉积物通量,减缓河湖淤积压力;②顺应长江流域河湖自然分洪分沙规律,开辟荆江南北二岸分洪分沙河道,同时开垸扩湖或湖垸置换;③疏通河道与加固垸堤并举;④上游(主、支流)建坝分洪分沙。  相似文献   

15.
Three unstable ephemeral-stream channels (arroyos), which drain source areas that have high sediment yields ranging from predominantly sand (Arroyo Calabasas) to a mixture of sand, silt, and clay (Sand Creek) to largely silt and clay (Sage Creek), were resurveyed to provide data on the rates and mechanics of erosion and sedimentation processes during periods ranging from 14 to 22 yr. Channel morphology changed significantly. Erosion occurred through nickpoint recession and bank collapse, but erosional reaches are separated by aggrading or stable-channel reaches. In general, sediment that is eroded, as the nickpoint recedes upstream, is trapped in the widened channel downstream. In this manner sediment is transported episodically out of these basins during a series of cut-and-fill cycles. The manner by which the channels aggrade and the morphology of the aggraded stable channels are controlled by the sediment type. The wide and shallow channel of Arroyo Calabasas is filled by vertical accretion of sand-size sediment. The narrow and deep channels of Sage Creek and Sand Creek are created by the lateral accretion of cohesive fine-grained sediment. The channel modification and the cut-and-fill episodes are dependent on high sediment yields, and therefore they are independent of subtle climatic shifts. Cut-and-fill deposits that have been created in this manner should not be equivalent in age from basin to basin, and therefore channel trenching and filling in the semiarid western United States during the Holocene need not be synchronous.  相似文献   

16.
Proglacial Quaternary lacustrine sediments deposited along the Caribou River Valley, Yukon, Canada, formed in a lake impounded by glacial ice that was retreating downslope. Sedimentation in the lake was dominated by turbid sediment underflows generated from the upslope, previously deglaciated region. The base of the sedimentary succession indicates a gradual transition from sporadic low-density distal flows to higher density proximal flows. Continued sediment accumulation resulted in the construction of a subaqueous clay and silt bank. Sedimentation was dominated by deposition of suspension load clay carried by subseasonal bottom countercurrents induced by katabatic winds. This sedimentation pattern prevailed until the subaqueous bank was disturbed by mass movement. Removal of the sediment bank increased the depth of the nearshore area sufficiently to allow turbid underflows to dominate sedimentation once more. The changing sedimentation patterns reflect events in the areas away from the ice front, rather than changes in the activity of the impounding glacier. Similar successions could be developed in other glacial lakes impounded by glaciers which moved up topographical slopes, either pre-existing or generated by glacioisostatic depression.  相似文献   

17.
《Applied Geochemistry》2003,18(9):1497-1506
Sedimentation and benthic release of As was determined in Baldeggersee, a eutrophic lake in central Switzerland. Sediment traps recorded As sedimentation during 1994, including a flood event in spring. Diagenetic processes were studied using porewater profiles at the sediment–water interface and in deeper sediment strata deposited in the mesotrophic lake (before 1885). Sediment cores were used to calculate the accumulation and to construct the balance of sedimentation and remobilisation. The results showed that the lake sediment acts as an efficient sink for As. Only 22% of the particulate As flux reaching the sediment surface was remobilised at the sediment–water interface. The As accumulation in the recent varved section of the eutrophic lake was 40 mg As m−2 a−1. Iron reduction in older sediment caused a remobilisation of 1.2 mg As m−2 a−1. This upward flux from the deeper sediment was quantitatively immobilised in the recent sulfidic sediments. The flood event in spring contributed about 34% of the yearly sediment load and led to distinct peak profiles of dissolved As in the porewater. This evidence for rapid remobilisation disappeared within months.  相似文献   

18.
Experimental modelling of an aggrading braided river has allowed investigation of the relationship between the frequency of channel avulsion ( A f), the duration of time that the braidplain is occupied by flow, the spatial pattern of braidplain sedimentation and how these respond to a change in sediment supply ( S s). Model results demonstrate a strong, positive relationship between S s and A f and that there is no downstream change in A f over the short braidplain distances ( ca 100 m) modelled herein. Although A f is strongly dependent on S s, the degree of channel switching does not influence the rate, or spatial pattern, of braidplain sedimentation. All experiments used a single, central input for water and sediment, and the channels occupied the centre of the alluvial basin for a longer period of time than the margins for all sediment supply rates and distances downstream. Despite this spatio-temporal pattern in flow occupancy, braidplain sedimentation rates were nearly uniform both downstream and across the basin, and increased at approximately the same rate as increases in S s. As a consequence, less frequent, and possibly short-lived, flows at the margins of the braidplain deposited and preserved more sediment per unit time in comparison with the centre of the basin where flow occupancy was higher. An approximate order of magnitude change in sediment supply resulted in only a factor of two change in bed slope, probably due to both an increase in channelization and adjustment of the channel form that maintained sediment transport through the basin. This result suggests that linear diffusion models are unlikely to be applicable in landscape evolution models that possess aggrading multi-thread rivers, which are capable of self-adjustment in channel number and form.  相似文献   

19.
137Cs法和210Pb法对比研究鄱阳湖近代沉积速率   总被引:14,自引:3,他引:14  
叶崇开 《沉积学报》1991,9(1):106-114
本文报道了应用137Cs法和210Pb法对比研究鄱阳湖近代沉积速率。按黄海高程11.1-14.6m湖区的沉积速率在1.0-3.7mm·a-1之间,平均值为2.2mm·a-1。文中还讨论了用γ谱法验证137Cs法和210Pb法给出的沉积速率的结果。137Cs法给出的沉积速率与γ谱法的结果是一致的,而210Pb法给出的沉积速率比γ谱法和137Cs法的结果约偏低16%。  相似文献   

20.
Bathymetric surveys during the 1991–2000 decade in two ice-contact, proglacial lakes on the eastern sector of Bering piedmont lobe captured the buildup effects of the 1993–1995 surge. Following ice-front advance of 1.0–1.5 km into Tsivat and Tsiu Lakes, the basins were significantly altered by surge-related sedimentation including the impact of a subglacial outburst into Tsivat Lake. The subsequent changes in basin shape, size, and morphology were monitored by six bathymetric surveys. Measured changes in water depth serve as a proxy for determining increments of sediment accumulation.

Upwelling, ice-front vents fed by subglacial tunnels transported suspended fine sediment directly into the lake system. The rate of suspension settling within both lakes varied from 0.6 to 1.2 m year−1 prior to the surge. Suspended load during surge years increased sixfold from 1.7 to 13.9 g l−1, accompanied by increased sediment accumulation of 2.2–3.1 m year−1. Vent-related aggradation and subsequent filling of Tsivat Lake caused sediment bypassing to Tsiu Lake, where encroachment by delta growth contributed to a postsurge rate of bottomset accumulation of 3.0 m year−1.

The total sediment influx from subglacial sources is represented by the sum of bathymetrically determined accumulation, plus an estimated volume of sediment that remained suspended, thus passing through the lake system. Total sediment flux along the eastern Bering piedmont lobe from 1991 to 2000 is approximately 227 million cubic meters.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号