首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The last Ice Age (Würm) glacier cover was reconstructed on the basis of standard geomorphological indicators in S Tibet between the S slope and N slope of the Himalaya by way of the Tibetan Himalaya to the Transhimalaya (28° – 29° 50' N/85° 40' – 91° 10' E). At the same time, though subject to varying density of data, the process of Late and Post-Glacial deglaciation to Neo-Galacial and Recent glacier cover was considered. Evidence of an almost total glaciation of S Tibet was found in indicators like glaciated knobs, trough valleys with pronounced flank polishings and limits of glacial scouring on nunataks, as well as in findings of erratics, lateral moraines, end moraines, and terraces of outwash plains. This total glaciation took the form of an ice-stream network and attained a thickness of at least 1200 m. Ice-free to about 87° – 86° E, the Tsangpo valley with its sander deposits occupied the gap between the glacier areas of the Tibetan and High Himalayas in the S (I 3) and those of the Transhimalaya in the N (I 2). In the light of recently glaciated Late Glacial terminal moraines and ice marginal rapms it has been possible to estimate a glacio-isostatic uplift of c. 400 m during 10 x 103 years (an average of 40 mm/year) following deglaciation. It is about 3 to 8 times greater than the tectonic uplift of the High Himalaya. The post-glacially intensified uplift of the S Tibetan Plateau by comparison with the High Himalaya is attributed to the much greater glacier burden during the Ice Age.In the area under investigation a High Glacial ELA depression (equilibrium line altitude depr.) of at least 1200 (1180) m was reconstructed for a mean altitude of about 4700 (4716) m asl. Assuming constant hygric conditions and a gradient of 0.7° C/100 m, the temperature drop at the time would have been 8.4° C. Since precipitation during the Ice Age must, if anything, have been less, a drop in summer temperature of about 10° C may be regarded as probable.  相似文献   

2.
Matthias Kuhle   《Tectonophysics》2007,445(1-2):116
Since 1973 new data were obtained on the maximum extent of glaciation in High Asia. Evidence for an ice sheet covering Tibet during the Last Glacial Period means a radical rethinking about glaciation in the Northern Hemisphere. The ice sheet's subtropical latitude, vast size (2.4 million km2) and high elevation (6000 m asl) are supposed to have resulted in a substantial, albedo-induced cooling of the Earth's atmosphere and the disruption of summer monsoon circulation. Moraines were found to reach down to 460 m asl on the southern flank of the Himalayas and to 2300 m asl on the northern slope of the Tibetan Plateau, in the Qilian Shan region. On the northern slopes of the Karakoram, Aghil and Kuen-Lun mountains, moraines occur as far down as 1900 m asl. In southern Tibet radiographic analyses of erratics suggest a former ice thickness of at least 1200 m. Glacial polish and roches moutonnées in the Himalayas and Karakoram suggest former glaciers as thick as 1200–2700 m. On the basis of this evidence, a 1100–1600 m lower equilibrium line (ELA) has been reconstructed, resulting in an ice sheet of 2.4 million km2, covering almost all of Tibet. Radiometric ages, obtained by different methods, classify this glaciation as isotope stage 3–2 in age (Würmian = last glacial period). With the help of 13 climate measuring stations, radiation- and radiation balance measurements have been carried out between 3800 and 6650 m asl in Tibet. They indicate that the subtropical global radiation reaches its highest energies on the High Plateau, thus making Tibet today's most important heating surface of the atmosphere. At glacial times 70% of those energies were reflected into space by the snow and firn of the 2.4 million km2 extended glacier area covering the upland. As a result, 32% of the entire global cooling during the ice ages, determined by the albedo, were brought about by this area — now the most significant cooling surface. The uplift of Tibet to a high altitude about 2.75 Ma ago, coincides with the commencement of the Quaternary Ice Ages. When the Plateau was lifted above the snowline (= ELA) and glaciated, this cooling effect gave rise to the global depression of the snowline and to the first Ice Age. The interglacial periods are explained by the glacial-isostatic lowering of Tibet by 650 m, having the effect that the initial Tibet ice – which had evoked the build-up of the much more extended lowland ices – could completely melt away in a period of positive radiation anomalies. The next ice age begins, when – because of the glacial-isostatic reverse uplift – the surface of the Plateau has again reached the snowline. This explains, why the orbital variations (Milankovic-theory) could only have a modifying effect on the Quaternary climate dynamic, but were not primarily time-giving: as long as Tibet does not glaciate automatically by rising above the snowline, the depression in temperature is not sufficient for initiating a worldwide ice age; if Tibet is glaciated, but not yet lowered isostatically, a warming-up by 4 °C might be able to cause an important loss in surface but no deglaciation, so that its cooling effect remains in a maximum intensity. Only a glaciation of the Plateau lowered by isostasy, can be removed through a sufficiently strong warming phase, so that interglacial climate conditions are prevailing until a renewed uplift of Tibet sets in up to the altitude of glaciation.An average ice thickness for all of Tibet of approximately 1000 m would imply that 2.2 million km3 of water were stored in the Tibetan ice sheet. This would correspond to a lowering in sea level of about 5.4 m.  相似文献   

3.
Kuhle  Matthias 《GeoJournal》1988,17(4):581-595
During seven expeditions new data were obtained on the maximum extent of glaciation in Tibet and the surrounding mountains. Evidence was found of moraines at altitudes as low as 980 m on the S flank of the Himalayas and 2300 m on the N slope of the Tibetan Plateau, in the Qilian Shan. On the N slopes of the Karakoram, Aghil and Kuen Lun moraines occur as far down as 1900 m. In S Tibet radiographic analyses of erratics document former ice thicknesses of at least 1200 m. Glacial polishing and knobs in the Himalayas, Karakoram etc. are proof of glaciers as thick as 1200–2000 m. On the basis of this evidence, a 1100–1600 m lower equilibrium line altitude (ELA) was reconstructed for the Ice Age, which would mean 2.4 million km2 of ice covering almost all of Tibet, since the ELA was far below the average altitude of Tibet. On Mt. Everest and K2 radiation was measured up to 6650 m, yielding values of 1200–1300 W/m2. Because of the subtropical latitude and the high altitude solar radiation in Tibet is 4 times greater than the energy intercepted between 60 and 70° N or S. With an area of 2.4 million km2 and an albedo of 90% the Tibetan ice sheet caused the same heat loss to the earth as a 9.6 million km2 sized ice sheet at 60–70° N. Because of its proximity to the present-day ELA, Tibet must have undergone large-scale glaciation earlier than other areas. Being subject to intensive radiation, the Tibetan ice must have performed an amplifying function during the onset of the Ice Age. At the maximum stage of the last ice age the cooling effect of the newly formed, about 26 million km2 sized ice sheets of the higher latitudes was about 3 times that of the Tibetan ice. Nevertheless, without the initial impulse of the Tibetan ice such an extensive glaciation would never have occurred. The end of the Ice Age was triggered by the return to preglacial radiation conditions of the Nordic lowland ice. Whilst the rise of the ELA by several hundred metres can only have reduced the steep marginal outlet glaciers, it diminished the area of the lowland ice considerably.  相似文献   

4.
Matthias Kuhle 《GeoJournal》2001,54(2-4):107-396
A continuing prehistoric ice stream network between the Karakorum main crest and the Nanga Parbat massive has been evidenced, which, flowing down from the current Baltoro- and Chogolungma glaciers and filling the Shigar valley as well as the Skardu Basin, has flowed together with the Gilgit valley glacier to a joint Indus parent glacier through the Indus gorge. The ice stream network received an influx by a plateau glacier covering the Deosai plateau, which was connected through outlet glaciers to the ice filling of the Skardu Basin and the Astor glacier at the Nanga Parbat, as well as to the lower Indus glacier. The field observations introduced here in part confirm the results as to the Ice Age glacier surface area of Lydekker, Oestreich and Dainelli, but go beyond it. In additon, a reconstruction of the surface level of this ice stream network and its glacier thicknesses up to the highest regions of the present-day Karakorum valley glaciers has been carried out for the first time. In the area under investigation the Karakorum ice stream network showed three ice cupolas, culminating at an altitude of 6200–6400 m. Between the mountain groups towering 1000–2000 m higher up, they communicated with each other over the transfluence passes in a continuous glacier surface without breaks in slope. In the Braldu- and Basna valley ice thicknesses of 2400–2900 m have been reached. In the Skardu Basin, where the glacier thickness had decreased to c. 1500–1000 m, the ELA at an ice level of 3500-3200 m asl had fallen short to the extent that from here on down the Indus glacier a surface moraine cover has to be suggested. However, 80% of the surface of the ice stream network was devoid of debris and had an albedo of 75-90%. The lowest joint glacier terminus of the ice stream network was situated - as has already been published in 1988 – in the lower Indus valley at 850–800 m asl. The reconstructed maximum extension of the ice stream network has been classified as belonging to the LGM in the wider sense (60–18 Ka BP). Four Late Glacial glacier positions (I–IV), with a decreasing ice filling of the valleys, have been differentiated, which can be locally recognized through polish lines and lateral moraine ledges. The valley (trough-) flanks with their ground moraine covers, oversteepened by glacier abrasion, have been gravitationally destroyed by crumblings, slides and rock avalanches since the deglaciation, so that an interglacial fluvial-, i.e. V-shaped valley relief has been developed from the in part preserved glacial relief. The contrast of the current morphodynamics with regard to the preserved forms is seen as an indication of the prehistorically completely different - namely glacigenic – valley development and the obvious rapidity of this reshaping at still clearly preserved glacial forms provides evidence of their LGM-age. In an additional chapter the lowest ice margin positions, so far unpublished, are introduced, which have been reconstructed for the Hindukush, Central Himalaya and on the eastern margin of Tibet.  相似文献   

5.
Kuhle  Matthias 《GeoJournal》1999,47(1-2):3-276
Studies were done on new geomorphological and quaternary-geological profiles through representative reliefs of Tibet from the Central Himalaya as far as the Kuenlun. Thus, further detailed investigations on the prehistoric glaciation could be carried out. Youngest historical to neoglacial ice margin positions could be recorded. Their mapping took place in a downward direction from the modern glacier margins. They confirm snow line (ELA) depressions from decametres up to ca. 100–250 m. At distances of several kilometres to many decakilometres (depending on the relief) from the modern glaciers, névé shields and perennial snow fields, end moraines and later just remnants of lateral moraines and kame complexes of the Late Glacial (ca. Stadia IV-II) have been localized in an increasing disrupted succession and samples have been taken. The recorded, inter- and extrapolated lowest ice margin positions allowed the reconstruction of accompanying depressions of the snow line which, due to the altitude of the Tibetan plateau plains, attained a maximum of 400–700 m. Accordingly, the early Late Glacial (Stadia I to II) and High Glacial glacier traces (Riss or pre-LGM and Würm or LGM = Stadia −I and/or 0) occurred over a horizontal distance of 1620 km across the plateau with an average height of 4700 m asl without showing the key forms of ice margin positions. From the profiles introduced here, running from Mt. Everest/Cho Oyu (Central Himalaya) in the SE via Gertse (Kaitse; Central Tibet) as far as the Lingzi Thang and Aksai Chin and from there into the Kuenlun, as well as from a parallel section of the Gurla Mandhata (central S Tibet) to the currently very arid Nako Tso, located centrally in the W, sediment samples have been analysed which provide evidence for a ground moraine genesis. Thus, the macroscopic field observations are confirmed. Only the relatively small basin of Shiquanha (Ali) – like the Indus valley chamber of Leh – may have been free of ice during the High Glacial (LGM). Forms of glacial horns, as well as roches moutonnées and large, several metres-high round-polished mountain ridges with slight debris covers, flank polishings, abraded mountain spurs at intermediate valley ridges and high-lying erratics document the widespread ice cover. Important ice thicknesses of at least 1300–1400 m have been recognized by means of transfluences. Especially by and in the Nako Tso (lake) the limnic undercutting of roches moutonnées provides evidence only of a postglacial filling into a primary glacial relief. The glacial ice cover (with the LGM at the end) testified here for a further area of Tibet, is the foundation of the relief-specific hypothesis on the development of the Ice Ages, based on the global radiation geometry: accordingly, the last great geological event, the early Pleistocene plate-tectonically induced uplift of Tibet above the snow line, has brought about a glaciation which, owing to its high albedo, reflected the subtropical radiation energy into space, so that it could not be exploited for the heating of the atmosphere. This may have triggered the Ice Ages. The repeated interglacial warming-up is to be reduced to the positive radiation anomalies by the variations of the parameters of the earth's orbit – which take place rhythmically – and the overlying glacio-isostatic lowering of Tibet and the other inland ice areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Matthias Kuhle 《GeoJournal》1986,13(4):331-346
On the slopes of Himalayan Mountains there is a reduction and culmination of glaciation at 7000–7200 m asl. The presumed cause for this is that the surface temperatures on these slopes are too low for glaciation. This working hypothesis was verified with temperature measurements using collected infra-red radiation. The regression analysis of the measurements taken in the Mt. Everest region during sunny weather conditions of the post-monsoon season resulted in a 0°C line at 7000–7200 m asl. The coincidence of the 0°C line with the upper limit of glaciation is causally definable with the copula between the function of temperature and snow metamorphism: since it is too cold above 7000–7200 m asl, metamorphism into perennial or galcial ice through settling or sintering is absent or simply too slow. High relief and drifting hinder here the processes of ice-formation through pressure compaction of the dry-snow accumulation caused by molecular diffusion and recrystallization. Above 7200 m only continuous leeward accumulations of shifting snow on wall sections with moderate inclination lead to the formation of seracs. However, glaciation generally ceases at this level. This additionally confirms another study. It has been proven that Himalayan glaciers with catchment areas over 7000 m do not extend further downward than those glaciers whose catchment areas just reach this altitude. A break in balance at 7100 m asl is thereby confirmed, and the upper glacial limit is proven. Above the glacial region a rocky zo ne adjoins with pergelic conditions even in the surface layer. This zone is covered by snow during monsoon season only. Here, the weathering processes take place in an arid environment without thawing and purely by means of temperature variations below 0°C. They could correspond to those occurring on a larger scale on the planets of our solar system.A lowering of the upper glacial limit by at least 660 or 1200 m respectively, analogous to the Pleistocene snow-line depression reconstructed in S Tibet and the Central Himalayas, is assumed during the Ice Age.The author gratefully acknowledges the translation of this paper rendered by Dr. J. A. Hellen, Newcastle-upon-Tyne.  相似文献   

7.
普若岗日冰原及其小冰期以来的冰川变化   总被引:39,自引:26,他引:13  
普若岗日是藏北高原最大的由数个冰帽型冰川组合成的大冰原.冰川覆盖面积422.58km2,冰储量为52.5153km3.冰川雪线海拔5620~5860m.冰原呈辐射状向周围微切割的宽浅山谷溢出50多条长短不等的冰舌,最大的可伸至山麓地带,形成宽尾状冰舌.在一些下伸较低的冰舌段,形成有许多冰塔林,以雄伟壮观的连座冰塔林和雏形冰塔林为主.在东南部一些冰舌段雏形冰塔林的上部,分布着奇特的新月型雪冰丘和链状排列有序的雪冰丘.小冰期以来,普若岗日的冰川呈退缩趋势.环绕冰舌分布的冰碛序列,在北部和东南部普遍可区分出3道.对比研究认为,分别属于小冰期3次寒冷期冰进的遗迹.而西部小冰期冰川作用的范围较小.按小冰期最盛时的规模量测当时的冰川面积,和现在相比该时段内冰川面积减少了24.20km2,当时冰川面积比现在大57%.由此引起的冰川资源的减少为3.6583km3,相当于36.583×108m3的水量.在普若岗日西侧,小冰期后期至20世纪70年代,冰川退缩了20m;70年代至90年代末,冰川退缩了40~50m;平均1.5~1.9m·a-1;1999年9月至2000年10月,退缩4~5m.明显反映出逐渐加剧的变化趋势.和其它地区相比较,普若岗日冰原变化比较小,表现出比较稳定的状。  相似文献   

8.
Geomorphic evidence of former glaciation in the high Drakensberg of southern Africa has proven controversial, with conflicting glacial and non‐glacial interpretations suggested for many landforms. This paper presents new geomorphological, sedimentological and micromorphological data, and glacier mass‐balance modelling for a site in the Leqooa Valley, eastern Lesotho, preserving what are considered to be moraines of a former niche glacier that existed during the Last Glacial Maximum (LGM). The geomorphology and macro‐sedimentology of the deposits display characteristics of both active and passive transport by glacial processes. However, micromorphological analyses indicate a more complex history of glacial deposition and subsequent reworking by mass movement processes. The application of a glacier reconstruction technique to determine whether this site could have supported a glacier indicates a reconstructed glacier equilibrium line altitude (ELA) of 3136 m a.s.l. and palaeoglacier mass balance characteristics comparable with modern analogues, reflecting viable, if marginal glaciation. Radiocarbon dates obtained from organic sediment within the moraines indicate that these are of LGM age. The reconstructed palaeoclimatic conditions during the LGM suggest that snow accumulation in the Drakensberg was significantly higher than considered by other studies, and has substantial relevance for tuning regional climate models for southern Africa during the last glacial cycle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The extent of glacier ice in the Canadian High Arctic during the Last Glacial Maximum (LGM) has been debated for decades. One school proposed a regional Innuitian Ice Sheet whereas another proposed a smaller, non-contiguous Franklin Ice Complex. Research throughout western Nares Strait supports coalescent Innuitian and Greenland ice during the LGM, based on widespread glacial and marine deposits dated by 14C and amino acid analyses. This coalescence likely promoted a vigorous regional ice flow westward across Ellesmere Island to Eureka Sound. Post-glacial emergence in Eureka Sound suggests a former ice thickness at least as great as that in Nares Strait (≥ 1 km). Recently, independent field studies elsewhere in the High Arctic also support an Innuitian Ice Sheet during the LGM. Collectively, these studies resolve a long-standing debate, and initiate new opportunities concerning the reconstruction of high-latitude palaeoenvironmental and palaeoclimatic change. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

11.
Two previously undocumented Pleistocene marine transgressions on Wrangel Island, northeastern Siberia, question the presence of an East Siberian or Beringian ice sheet during the last glacial maximum (LGM). The Tundrovayan Transgression (459,000–780,000 yr B.P.) is represented by raised marine deposits and landforms 15–41 m asl located up to 18 km inland. The presence of high sea level 64,000–73,000 yr ago (the Krasny Flagian Transgression) is preserved in deposits and landforms 4–7 m asl in the Krasny Flag valley. These deposits and landforms were mapped, dated, and described using amino acid geochronology, radiocarbon, optically stimulated luminescence, electron spin resonance, oxygen isotopes, micropaleontology, paleomagnetism, and grain sizes. The marine deposits are eustatic and not isostatic in origin. All marine deposits on Wrangel Island predate the LGM, indicating that neither Wrangel Island nor the East Siberian or Chukchi Seas experienced extensive glaciation over the last 64,000 yr.  相似文献   

12.
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22–40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.  相似文献   

13.
The extent of the Barents-Kara Sea ice sheet (northern Europe and Russia) during the Last Glacial Maximum (LGM), in Marine Isotope Stage (MIS) 2 is controversial, especially along the southern and northeastern (Russian High Arctic) margins. We conducted a multi-disciplinary study of various organic and mineral fractions, obtaining chronologies with 14C and luminescence dating methods on a 10.5 m long core from Changeable Lake (4 km from the Vavilov Ice Cap) on Severnaya Zemlya. The numeric ages indicate that the last glaciation at this site occurred during or prior to MIS 5d-4 (Early Middle Weichselian). Deglaciation was followed by a marine transgression which affected the Changeable Lake basin. After the regression the basin dried up. In late Middle Weichselian time (ca 25–40 ka), reworked marine sediments were deposited in a saline water body. During the Late Weichselian (MIS 2), the basin was not affected by glaciation, and lacustrine sediments were formed which reflect cold and arid climate conditions. During the termination of the Pleistocene and into the Holocene, warmer and wetter climate conditions than before led to a higher sediment input. Thus, our chronology demonstrates that the northeastern margin of the LGM Barents-Kara Sea ice sheet did not reach the Changeable Lake basin. This result supports a modest model of the LGM ice sheet in northern Europe determined from numeric ice sheet modelling and geological investigations.  相似文献   

14.
The offshore and coastal geomorphology of southwest Greenland records evidence for the advance and decay of the Greenland Ice Sheet during the Last Glacial Maximum. Regional ice flow patterns in the vicinity of Sisimiut show an enlarged ice sheet that extended southwestwards on to the shelf, with an ice stream centred over Holsteinsborg dyb. High level periglacial terrain composed of blockfield and tors is dated to between 101 and 142 ka using 26Al and 10Be cosmogenic exposure ages. These limit the maximum surface elevation of the Last Glacial Maximum ice sheet in this part of southwest Greenland to ca 750–810 m asl, and demonstrate that terrain above this level has been ice free since MIS 6. Last Glacial Maximum ice thickness on the coast of ca 700 m implies that the ice sheet reached the mid to outer continental shelf edge to form the Outer Hellefisk moraines. Exposure dates record ice surface thinning from 21.0 to 9.8 ka, with downwasting rates varying from 0.06 to 0.12 m yr−1. This reflects strong surface ablation associated with increased air temperatures running up to the Bølling Interstadial (GIS1e) at ca 14 ka, and later marine calving under high sea levels. The relatively late retreat of the Itilleq ice stream inland of the present coastline is similar to the pattern observed at Jakobshavn Isbræ, located 250 km north in Disko Bugt, which also retreated from the continental shelf after ca 10 ka. We hypothesise that the ice streams of West Greenland persisted on the inner shelf until the early Holocene because of their considerable ice thickness and greater ice discharge compared with the adjacent ice sheet.  相似文献   

15.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

16.
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10−5 to 114×10−5 km3 yr−1 and 112×10−5 to 247×10−5 km3 yr−1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10−5 to 220×10−5 km3 yr−1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.  相似文献   

17.
Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating from the Mandakini river valley of the Garhwal Himalaya enabled identification of four major glacial events; Rambara Glacial Stage (RGS) (13 ± 2 ka), Ghindurpani Glacial Stage (GhGS) (9 ± 1 ka), Garuriya Glacial Stage (GGS) (7 ± 1 ka) and Kedarnath Glacial Stage (KGS) (5 ± 1 ka). RGS was the most extensive glaciation extending for ~6 km down the valley from the present day snout and lowered to an altitude of 2800 m asl at Rambara covering around ~31 km2 area of the Mandakini river valley. Compared to this, the other three glaciations (viz., GhGS, GGS and KGS) were of lower magnitudes terminating around ~3000, ~3300 and ~3500 m asl, respectively. It was also observed that the mean equilibrium line altitude (ELA) during RGS was lowered to 4747 m asl compared to the present level of 5120 m asl. This implies an ELA depression of ~373 m during the RGS which would correspond to a lowering of ~2°C summer temperature during the RGS. The results are comparable to that of the adjacent western and central Himalaya implying a common forcing factor that we attribute to the insolation-driven monsoon precipitation in the western and central Himalaya.  相似文献   

18.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3km2,是现代冰川面积的4.5倍,冰储量约为274.4km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76km2,冰储量约为0.51km3;LGM时期两冰川的平衡线高度分别为4 460~4 547m和3 569~3 694m,与现代冰川相比分别降低了535m和1 034~1 184m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89℃和5.09~6.99℃。  相似文献   

19.
We summarize evidence of the latest Pleistocene and Holocene glacier fluctuations in the Canadian Cordillera. Our review focuses primarily on studies completed after 1988, when the first comprehensive review of such evidence was published. The Cordilleran ice sheet reached its maximum extent about 16 ka and then rapidly decayed. Some lobes of the ice sheet, valley glaciers, and cirque glaciers advanced one or more times between 15 and 11 ka. By 11 ka, or soon thereafter, glacier cover in the Cordillera was no more extensive than at the end of the 20th century. Glaciers were least extensive between 11 and 7 ka. A general expansion of glaciers began as early as 8.4 ka when glaciers overrode forests in the southern Coast Mountains; it culminated with the climactic advances of the Little Ice Age. Holocene glacier expansion was not continuous, but rather was punctuated by advances and retreats on a variety of timescales. Radiocarbon ages of wood collected from glacier forefields reveal six major periods of glacier advance: 8.59–8.18, 7.36–6.45, 4.40–3.97, 3.54–2.77, 1.71–1.30 ka, and the past millennium. Tree-ring and lichenometric dating shows that glaciers began their Little Ice Age advances as early as the 11th century and reached their maximum Holocene positions during the early 18th or mid-19th century. Our data confirm a previously suggested pattern of episodic but successively greater Holocene glacier expansion from the early Holocene to the climactic advances of the Little Ice Age, presumably driven by decreasing summer insolation throughout the Holocene. Proxy climate records indicate that glaciers advanced during the Little Ice Age in response to cold conditions that coincided with times of sunspot minima. Priority research required to further advance our understanding of late Pleistocene and Holocene glaciation in western Canada includes constraining the age of late Pleistocene moraines in northern British Columbia and Yukon Territory, expanding the use of cosmogenic surface exposure dating techniques, using multi-proxy paleoclimate approaches, and directing more of the research effort to the northern Canadian Cordillera.  相似文献   

20.
Lambeck, K., Purcell, A., Zhao, J. & Svensson, N‐O. 2010 (April): The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas, Vol. 39, pp. 410–435. 10.1111/j.1502‐3885.2010.00140.x. ISSN 0300‐9483. Glacial rebound modelling, to establish constraints on past ice sheets from the observational evidence of palaeo‐shoreline elevations, is well established for the post‐ Last Glacial Maximum (post‐LGM) period, for which the observational evidence is relatively abundant and well distributed spatially and in time. This is particularly the case for Scandinavia. For the earlier part of the glacial cycle this evidence becomes increasingly sparse and uncertain such that, with the exception of the Eemian period, there are very few, if any, direct sea‐level indicators that constrain any part of the Scandinavian Ice Sheet evolution before the LGM. Instead, we assume that ice‐sheet basal conditions during Marine Isotope Stage 3 (MIS 3) are the same as those for the LGM, focus on establishing these conditions from the rebound analysis for the LGM and Lateglacial period, and then extrapolate to the earlier period using observationally constrained locations of the ice margins. The glacial rebound modelling and inversion follow previously established formulations, with the exception that the effects of water loading from proglacial lakes that form within the Baltic Basin and elsewhere have been included. The data set for the inversion of the sea‐ and lake‐level data has been extended to include marine‐limit data in order to extend the observational record further back in time. The result is a sequence of time slices for the Scandinavian Ice Sheet from the time of MIS 4 to the Lateglacial that are characterized by frozen basal conditions until late in the LGM interval when rapid thinning occurred in the eastern and southern sectors of the ice sheet. The primary function of these models is as an interpolator between the fragmentary observational constraints and to produce quantitative models for the glaciation history with predictive capabilities, for example regarding the evolution of the Baltic Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号