首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GIS-based evaluation of rockfall risk along routes in Greece   总被引:1,自引:0,他引:1  
This article presents a GIS-based system, designed to assist in the management of rockfall risk along Greek routes. The system was developed in two stages; the field data collection led to the implementation of a rockfall rating system with its fundamental parameters, while the data process concluded to a rockfall data base and a GIS-based interface. The fundamental parameters were derived from the rockfall hazard rating system developed by Pierson et al. at the Oregon State Highway Division and provide a coherent approach to decide the type and the cost of protection measures to be applied in an area affected by rockfalls and presents highest rockfall risk. The system presented in this paper as well as the original system comprises exponential scoring functions that represent the increased hazard and reflected in nine categories forming the classification. The method presented in this paper modified certain categories from the original system which were described qualitatively and may lead to quite subjective estimations. These categories are ditch effectiveness; climate and presence of water on slope as well as rockfall history. Moreover, the original category “Geologic characteristic” was changed to Structural and Discontinuities Index; an index that relates blockiness of rock mass and orientation of joints with their weathering condition and their roughness. This index follows the classification of weathering and joint’s roughness suggested by International Society of Rock Mechanics, while other modifications regarding the categories “decision sight distance” and “roadway width” were applied based on Greek standards. An application of this modified method to a 3 km road which connects Athinios port and Fira, the capital of Santorini island, Greece, a high traffic intensity road where rockfalls periodically cause traffic interruptions is presented. The method was applied in fifteen cross sections of slopes adjacent to the road and the analyses showed increased risk and the need for urgent remedial works.  相似文献   

2.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   

3.
贵州关岭大寨崩滑碎屑流灾害初步研究   总被引:3,自引:0,他引:3  
2010年6月28日,贵州省关岭县岗乌镇大寨村发生特大型崩滑碎屑(石)流灾害,造成99人死亡或失踪。通过现场考察崩滑区的地质环境与斜坡岩体结构,认为斜坡体由似"干砌块石结构"的裂隙化岩体组成是发生崩溃式破坏的主要内在原因。超常暴雨(过程雨量237mm)条件下斜坡岩体后缘裂缝充水形成持续的"水楔作用"是斜坡岩体松动、倾倒垮塌的主要外部引发因素。碎屑(石)流块度的空间分布具有从源头向沟口逐次减小,碎屑(石)流运动冲击高度逐步降低,冲击速度逐步减小,并显示4个能级4个冲程的特点。根据动势能守恒定律,计算了每个冲程的最大速度,得出第1冲程为高速崩滑,其它冲程属于碎屑(石)流动冲击。未发现区域天然地震、光照水库诱发地震与外围历史采矿活动与本次事件相关的直接证据。由于滑坡后缘仍存在不稳定岩体,碎屑(石)流堆积体上多处分布直径3~5m的堰塞塘,说明碎屑(石)空隙的排泄能力不足,在未来暴雨条件下引发新的崩滑或形成沟谷型泥石流的可能性是存在的。  相似文献   

4.
滚石灾害是山区常见的地质灾害类型,研究滚石的运动特征对地质灾害调查及危险性评估有着重要意义。通过对尼泊尔某项目滚石灾害后现场进行工程地质调查,分析其灾害成因机制,查明事故原因。调查结果表明:9 ·15灾害非人类活动的影响,属自然地质灾害,造成事故的主要原因为超高位岩体崩塌,而滚石的范围又超过前期预测的危险区。通过现场痕迹分析,推测出滚石的运动路径。根据调查出的撞击点位置、物质组成及几何特征,作者提出运用运动学原理还原滚石运动轨迹,并利用rocfall软件对超高位危岩体崩落后的运动轨迹进行随机模拟分析,推算出超高位危岩体崩落后能量大小的变化,为防护措施方案提供可靠的依据。张口式帘式网韧性强,防护能级高,对高陡边坡滚石灾害能起到很好的效果。本文可为类似高陡边坡的危岩治理防护提供参考。  相似文献   

5.
Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.  相似文献   

6.
Rockfalls are common in the steep and vertical slopes of the Campania carbonate massifs and ridges, and frequently represent the main threat to the anthropogenic environment, potentially damaging urban areas, scattered houses, roads, etc. Despite the generally limited volumes involved, the high velocity of movement (from few to tens of metres per second) poses rockfalls among the most dangerous natural hazards to man. Evaluating the rockfall hazard is not an easy task, due to the high number of involved factors, and particularly to the difficulty in determining the properties of the rock mass. In this paper, we illustrate the assessment of the rockfall hazard along a small area of the Sorrento Peninsula (Campania region, southern Italy). Choice of the site was determined by the presence of a road heavily frequented by vehicles. In the area, we have carried out detailed field surveys and software simulations that allow generating simple rockfall hazard maps. Over twenty measurement stations for geo-mechanical characterization of the rock mass have been distributed along a 400-m-long slope of Mount Vico Alvano. Following the internationally established standards for the acquisition of rock mass parameters, the main kinematics have been recognized, and the discontinuity families leading to the different failures identified. After carrying out field experiments by artificially releasing a number of unstable blocks on the rock cliff, the rockfall trajectories along the slope were modelled using 2-D and 3-D programs for rockfall analysis. The results were exploited to evaluate the rockfall hazard along the threatened element at risk.  相似文献   

7.
层状块体结构岩坡崩塌过程的数值模拟   总被引:3,自引:1,他引:3  
本文在某实际工程地质分析的基础上,采和数值模拟方法研究了反倾层状块体结构岩体中开挖边坡的崩塌过程。通过统计分析得到岩体结构的统计性质参数及岩层厚度和节理间距分布的密度函数。采用随机参数模拟生成边坡岩体的结构,随机生成边坡开挖线切割岩体,根据岩块间的相互关系追踪每个岩块的稳定性,统计岩体崩塌的最大深度,得到破坏深度分布的概率分布曲线。模拟结果为实际开挖过程所证实。  相似文献   

8.
There exists a transition between rockfalls, large rock mass failures, and rock avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly used to assess the hazard level. The management of the rockfall risk requires the knowledge of the frequency of the events but also defining the worst case scenario, which is the one associated to the maximum expected (credible) rockfall event. The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà d’Andorra during the last 50 years shows that they can be fitted to a power law. We argue that the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. Neither geomorphological evidences of past events nor the size of the potentially unstable rock masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes predicted by the power law. We have observed that the stability of the slope at the Solà is controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at the rockfall scars was measured with a terrestrial laser scanner. The distribution of the areas of the basal planes may be also fitted to a power law that shows a truncation for values bigger than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure of the rock mass at the Solà d’Andorra makes us conclude that the size of the failures is controlled by the fracture pattern and that the maximum size of the failure is constrained. Two sets of steeply dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous failure surfaces (F3 and F5). We conclude that due to the structural control, large slope failures in Andorra are not randomly distributed thus confirming the findings in other mountain ranges.  相似文献   

9.
论文对崩塌、滑坡等地质灾害的防治处理进行归纳总结,并依据灾害的类型、性质、成因、规模大小、滑体特点提出了不同的治理方法。包括:绕避、加载反压、清方减重、防崩滑挡土墙、抗滑明洞、排水工程、抗滑桩、锚杆加固等。根据工程特点,需要在地质勘探和稳定性分析后对治理方案进行优化。  相似文献   

10.
无人机影像在高陡边坡危岩体调查中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
在高陡边坡危岩体的调查中,复杂的地形条件经常限制工作的正常开展,如何快速准确地获取地质灾害信息一直是地质灾害调查研究中的难点之一。以往的研究中对无人机遥感技术在黄土、高原等地区应用有所报道,但对西南地区高陡边坡危岩体灾害调查的研究尚无报道。文章以锦屏二级水电站出线场边坡落石灾害所在区域为例,将无人机摄影测量技术应用于高陡边坡危岩体调查中,通过无人机倾斜摄影获取高分辨率遥感影像,开展遥感影像三维建模,进行地质灾害遥感解译,总结了无人机遥感系统在高陡边坡危岩体调查的技术流程。通过三维实景模型,精确地分析了落石灾害的空间分布、失稳模式及演化过程,查明了区域内危岩隐患点的分布特征;基于三维点云模型,提取出地质灾害体的属性信息,测得落石方量为11.7 m3,采用最小二乘法进行平面拟合,得到落石两组主控结构面产状为275.4°∠31.2°、103.5°∠63.3°。实践表明,无人机遥感技术在高陡边坡地区落石灾害调查中具有明显的可行性和优越性,可以较好地应用于高陡边坡危岩体调查中。  相似文献   

11.
The Tramuntana range, in the northwestern sector of the island of Mallorca (Balearic Islands, Spain), is frequently affected by rockfalls which have caused significant damage, mainly along the road network. In this work, we present the procedure we have applied to calibrate and validate rockfall modelling in this region, using 103 cases of the available detailed rockfall inventory (630 rockfall events collected since the eighteenth century). We have exploited STONE (Guzzetti et al. 2002), a GIS-based rockfall simulation software which computes 2D and 3D rockfall trajectories starting from a DTM and maps of the dynamic rolling friction coefficient and of the normal and tangential energy restitution coefficients. The appropriate identification of these parameters determines the accuracy of the simulation. To calibrate them, we have selected 40 rockfalls along the range which include a wide variety of outcropping lithologies. Coefficients values have been changed in numerous attempts in order to select those where the extent and shape of the simulation matched the field mapping. Best results were summarized with the average statistical values for each parameter and for each geotechnical unit, determining that mode values represent more precisely the data. Initially, for the validation stage, 10 well-known rockfalls exploited in the calibration phase have been selected. Confidence tests have been applied to their modelling results taking into account not only the success but also the mistakes. The best accuracy is obtained when the rockfall has a preferential trajectory and worse results when the rockfall follows two or more trajectories. Additionally, the greater the rockfall runout length, the less precise the simulation is. We have further validated the calibrated parameters along the Ma-road (111 km), the main transportation corridor in the range, using 63 rockfall events that occurred during the past 18 years along the road. Of the rockfalls where source areas were properly identified, 81.5 % are well represented by STONE modelling, as the travel paths and the depositional areas are successfully ascertained. Results of the analysis have been used by the Road Maintenance Service of Mallorca to assess hazard and risk posed by rockfall at regional scale to design the road management plan.  相似文献   

12.
The present contribution is a complete study extending before, during, and after the excavation of the mountain side that lying north of road 7. It includes slope stability analysis, rock cut design, and rockfall modeling for natural slope and rock cut face. Neoproterozoic granodiorite and biotite granite forming the slope body have medium to very high strengths. Mineral compositions and textures of these intact rocks control the strength values. These rocks are intensively dissected by fractures that are filled with montmorillonite and chlorite. The high plasticity and slippery nature of these filling materials represent the main problem that may face a rock cut designer because they damage the mechanical properties of these fractures. The problem begins with the selection of the rock mass classification that deals with the fracture fillings and extends during the stability analysis and the suggestion of mitigation and supporting measures. The rock masses building the natural slope are suffered by plane, wedge, and toppling failures. Therefore, two rock cut designs are suggested to avoid the hazards related to these failures and considering the construction cost as well. Rockfall modeling for the natural slope and rock cut designs was done to assess the hazards related to these falling of the blocks. The kinetic energy of falling blocks is represented on the roadway by the coverage distance and block rebound amplitude. Slope height has a positive effect on the values of these distance and amplitude, whereas the steepness of berm height has a negative effect on them. Coverage distance is a function to the location of rockfall barrier and to the width of road ditch, while the amplitude controls the barrier height.  相似文献   

13.
Because of the existence of a front stable rockmass barrier, the failure pattern of an oblique inclined bedding slope is conventionally recognized as a lateral rockfall/topple, and then a transformation into a rockfall accumulation secondary landslide. However, the Jiweishan rockslide, Wulong, Chongqing, which occurred on June 5, 2009, illustrates a new failure pattern of massive rock slope that rockmass rapidly slides along apparent dip, and then transforms into a long runout rock avalanche (fragment flow). This paper analyzes the mechanism of the new failure pattern which is most likely triggered by gravity, karstification, and the processes associated with mining activities. A simulation of the failure processes is shown, using the modeling software, FLAC3D. The results show that there are five principal conditions for an apparent dip slide associated with an oblique inclined bedding slope are necessary: (1) a block-fracture bedding structure. The rockmass is split into obvious smaller, distinct blocks with several groups of joints, (2) an inclined rockmass barrier. The sliding rockmass (i.e., the rockslide structure before movement) exists along a dip angle and is barricaded by an inclined stable bedrock area, and the subsequent sliding direction is deflected from a true dip angle to an apparent dip angle; (3) apparent dip exiting. The valley and cliff provide a free space for the apparent dip exiting. (4) Driving block sliding, which means the block has a push type of effect on the motion of the rockslide. The “toy bricks” rockmass is characterized by a long-term creeping that induces the shear strength reduction from peak to residual value along the bottom soft layer, and the sliding force is therefore increased. (5) The key block resistance and brittle failure. The pressure on the key block is increased by the driving rockmass and its strength decreases due to karstification, rainfall, and mining. The brittle failure of the karst zone between the key block and the lateral stable bedrock occurs instantaneously and is largely responsible for generating the catastrophic rockslide–rock avalanche. If there was not a pre-existing key block, the failure pattern of such the inclined bedding rockmass could be piecemeal disintegration or small-scale successive rockfall or topple. The recognition of catastrophic failure potential in such inclined bedding slopes requires careful search for not only structures dipping in the direction of movement, but also key block toe-constrained condition.  相似文献   

14.
Multi-scenario Rockfall Hazard Assessment Using LiDAR Data and GIS   总被引:1,自引:0,他引:1  
Transportation corridors that pass through mountainous or hilly areas are prone to rockfall hazard. Rockfall incidents in such areas can cause human fatalities and damage to properties in addition to transportation interruptions. In Malaysia, the North–South Expressway is the most significant expressway that operates as the backbone of the peninsula. A portion of this expressway in Jelapang was chosen as the site of rockfall hazard assessment in multiple scenarios. Light detection and ranging techniques are indispensable in capturing high-resolution digital elevation models related to geohazard studies. An airborne laser scanner was used to create a high-density point cloud of the study area. The use of 3D rockfall process modeling in combination with geographic information system (GIS) is a beneficial tool in rockfall hazard studies. In this study, a 3D rockfall model integrated into GIS was used to derive rockfall trajectories and velocity associated with them in multiple scenarios based on a range of mechanical parameter values (coefficients of restitution and friction angle). Rockfall characteristics in terms of frequency, height, and energy were determined through raster modeling. Analytic hierarchy process (AHP) was used to compute the weight of each rockfall characteristic raster that affects rockfall hazard. A spatial model that considers rockfall characteristics was conducted to produce a rockfall hazard map. Moreover, a barrier location was proposed to eliminate rockfall hazard. As a result, rockfall trajectories and their characteristics were derived. The result of AHP shows that rockfall hazard was significantly influenced by rockfall energy and then by frequency and height. The areas at risk were delineated and the hazard percentage along the expressway was observed and demonstrated. The result also shows that with increasing mechanical parameter values, the rockfall trajectories and their characteristics, and consequently rockfall hazard, were increased. In addition, the suggested barrier effectively restrained most of the rockfall trajectories and eliminated the hazard along the expressway. This study can serve not only as a guide for a comprehensive investigation of rockfall hazard but also as a reference that decision makers can use in designing a risk mitigation method. Furthermore, this study is applicable in any rockfall study, especially in situations where mechanical parameters have no specific values.  相似文献   

15.
针对重庆市南川区甑子岩危岩体面临的崩塌地质灾害问题,分析不同高度、不同规模的危岩体对东侧居民区的落石风险及危害性。以甑子岩处岩质边坡为研究对象,根据其结构面发育情况及崩塌落石特征确定模型尺寸,运用RocFall软件对崩塌落石的能量、速度、运动轨迹、落点位置及冲击力等进行模拟计算。以此对崩塌落石区进行落石风险评估,根据崩塌落石的动量和动能,按最危险原则法将崩塌落石的危险性分区,分为Ⅰ危险性极大、Ⅱ危险性大、Ⅲ危险性一般、Ⅳ危险性较小、Ⅴ无危险五个分区,并将此分区应用于甑子岩危岩体,评价崩子岩危岩体居民区的落石风险及危险性,确保居民安全。通过对崩塌落石区的危险性分区,可以用来指导居民区的安置和防护措施。  相似文献   

16.
In this paper, a study aimed to assess the rockfall hazard along a portion of the SS18 coastal road, located in the coastal area of Maratea (Basilicata Region, Southern Italy), is presented. The relevance of this study derives from the location of the study area, because the SS18 is a strategic roads in a touristic area, and, since the hazard assessment was performed in 2004 within a project financed by the Viability Regional Department of Autonomous National Company of Roads (ANAS), from the possibility to validate the results by using real rockfall events occurred after 2004. The procedure for assessing the rockfall hazard was composed of four sequential analyses: (i) geomechanical and kinematic characterization of rock mass, (ii) implementation of Romana’s (1985) Slope Mass Rating (SMR) method for identifying the potential boulder release areas (rockfall initiation areas), (iii) determination of rockfall trajectories by using a 3D numerical model (ROTOMAP), (iv) calculation and mapping of the hazard index by combining three factors, i.e., (a) lithological features of outcropping materials on rock faces, (b) kinematic compatibility defined by simulating the rockfall trajectories, and (c) spatial distribution of occurred rockfall events. Finally, the proposed methodology was validated by combining the distribution of the hazard levels along the road with the location on the SS18 of the rockfall events occurred from 2004 to 2014.  相似文献   

17.
Cut slopes are prone to fail due to the disturbance on original geometry and strength. In addition, because of these disturbances and stress relief, natural apertures which increase the weathering effects widen in engineering time. Owing to these reasons, slope stability assessment has a prominent role on these road cuts. Generally, slope stabilities are assessed by deterministic approaches with a significant engineering judgment. Because of this reason the reputation of probabilistic approaches is increasing. In this study, 20 road cuts located in North West Black Sea region of Turkey were evaluated using slope stability probability classification (SSPC). Considering this probabilistic approach, rock strength parameters and failure mechanisms were determined. Furthermore, slope mass rating (SMR) classification was applied for each road cut in order to compare with the results obtained from SSPC. These overall results were then evaluated with the field observations considering rockslope deterioration assessment (RDA) and Falling Rock Hazard Index (FRHI) for the disturbed/weathered zones, and failure mechanisms. According to these, SSPC is found to be more accurate for surficial degradations (raveling and fall) using samples taken from the disturbed/weathered zones rather than using relatively fresh samples beyond the disturbed zone. Moreover, despite strength differences between weathered and relatively fresh zones, SMR classification is identified to reveal the same stable probabilities. It is found that SSPC shows more detailed probabilistic results than SMR. Lastly, rockfall and raveling mechanisms determined by RDA and rockfall risk by FRHI were found to be coherent with SSPC and field observations.  相似文献   

18.
文章利用有限差分程序FLAC,定量化讨论了边坡岩体(软岩)的变形模量、泊松比、密度、粘聚力、内摩擦角、边坡高度等参数对软岩边坡变形的影响。研究表明,边坡位移随变形模量E的增大而减小;泊松比μ的增加,则会引起x方向的位移的增加,y方向的位移减小;而岩体密度对岩石边坡位移的影响甚弱。边坡岩体的粘聚力c对边坡变形的影响程度与岩体的其他参数间存在很大关系。内摩擦角对边坡位移的影响大小,则取决于粘聚力c的取值。此外,随着边坡高度的增加边坡变形则会随之增加。其中x方向位移变化对边坡高度的变化更为敏感;同样,在边坡岩体其他参数不变的情况下,边坡倾角越大,边坡变形也越大。  相似文献   

19.
重庆市涪陵区厚层软硬相间公路高边坡的详细调查发现,不同的岩层产状,不同开挖方向其斜坡变形破坏模式不同。本文根据野外实例总结了不同岩层产状与开挖方向对应的破坏模式,平缓层状斜坡破坏方式有滑塌式崩塌、倾倒式崩塌和坠落式崩塌;中倾角层状斜坡破坏方式有顺层滑移和崩塌;高陡倾角层状斜坡坡破坏方式有滑移式崩塌和坠落式崩塌。表明斜坡变形破坏地质力学模式与斜坡岩体结构之间存在着密切的成生联系。通过对不同倾角的斜坡岩体破坏方式研究,可以达到系统评价预测斜坡稳定性的目的;通过公路开挖对不同产状岩层可能造成灾害的预期,可以采用不同的预防措施,避免大型灾害的发生。  相似文献   

20.
山西壶关太行山大峡谷景区为中国最美十大峡谷之一,但景区落石灾害频发,严重威胁景区安全运营。本文基于高精度地形信息与岩土体强度特性,采用坡度角分布方法开展区域尺度潜在落石源区识别,并引入岩体破坏敏感性指标定量描述潜在落石源区失稳概率。然后,利用经验模型Flow-R模拟落石运动扩散过程,获取落石的传播概率与能量分布情况。最后,提出落石危险性双因子评价模型实现落石危险性定量评估。获得主要结论如下:(1)研究区内潜在落石源区面积为25.7 km2(35.7%),主要以条带状分布于峡谷两侧陡壁。其中岩体破坏高敏感性区为3.3 km2。(2)研究区落石高危险区面积达3.22 km2,主要威胁景区内游客集散地与交通线路,尤其在S327荫林线红豆峡入口处落石危险性最高。(3)野外调查验证结果表明了应用坡度角分布方法识别潜在落石源区的高效性与准确性,提出的双因子评价模型可为峡谷区落石危险性评估提供快速解决方案。本文提出的“区域落石源区识别-源区失稳概率分析-落石危险性评估”的一整套技术方案能够为类似的高山峡谷区落石灾害早期识别及风险防控提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号