首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plate boundary geometry likely has an important influence on crustal production at mid-ocean ridges. Many studies have explored the effects of geometrical features such as transform offsets and oblique ridge segments on mantle flow and melting. This study investigates how triple junction (TJ) geometry may influence mantle dynamics. An earlier study [Georgen, J.E., Lin, J., 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions. Earth Planet. Sci. Lett. 204, 115–132.] suggested that the effects of a ridge–ridge–ridge configuration are most pronounced under the branch with the slowest spreading rate. Thus, we create a three-dimensional, finite element, variable viscosity model that focuses on the slowest-diverging ridge of a triple junction with geometry similar to the Rodrigues TJ. This spreading axis may be considered to be analogous to the Southwest Indian Ridge. Within 100 km of the TJ, temperatures at depths within the partial melting zone and crustal thickness are predicted to increase by ~ 40 °C and 1 km, respectively. We also investigate the effects of differential motion of the TJ with respect to the underlying mantle, by imposing bottom model boundary conditions replicating (a) absolute plate motion and (b) a three-dimensional solution for plate-driven and density-driven asthenospheric flow in the African region. Neither of these basal boundary conditions significantly affects the model solutions, suggesting that the system is dominated by the divergence of the surface places. Finally, we explore how varying spreading rate magnitudes affects TJ geodynamics. When ridge divergence rates are all relatively slow (i.e., with plate kinematics similar to the Azores TJ), significant along-axis increases in mantle temperature and crustal thickness are calculated. At depths within the partial melting zone, temperatures are predicted to increase by ~ 150 °C, similar to the excess temperatures associated with mantle plumes. Likewise, crustal thickness is calculated to increase by approximately 6 km over the 200 km of ridge closest to the TJ. These results could imply that some component of the excess volcanism observed in geologic settings such as the Terceira Rift may be attributed to the effects of TJ geometry, although the important influence of features like nearby hotspots (e.g., the Azores hotspot) cannot be evaluated without additional numerical modeling.  相似文献   

2.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

3.
The magnetotelluric (MT) method has been among the favorite supporting tools for seismic imaging of sub-salt and sub-basalt targets. In this paper we present an example from Kachchh, India (where basaltic rocks overlie Mesozoic sedimentary rocks), and discuss the feasibility of using MT method as an exploration tool in this geological setting. Our results highlight the difference in magnetotelluric response caused by the thin intrabasalt layering. The key issue addressed in this paper is what MT can and cannot provide in such geological settings. First, we compute apparent resistivity and phase response curves using representative resistivity-depth models and borehole data from the study area. Later, we compare these results to assess the plausibility of using MT to image the sub-volcanic sediments at Kachchh. Finally, we substantiate our discussion through one-dimensional inversion of the field observed MT data from this region that exhibits poor sensitivity of MT for thin basalt layers.  相似文献   

4.
Sea-surface magnetic profiles exhibit coherent short wavelength “micro-anomalies” (or “tiny wiggles”) superimposed to the main anomalies due to reversals. In this study, we investigate the nature and distribution of these tiny wiggles on oceanic crust formed during the  42 Myr-long period following the Cretaceous Normal Superchron. To this end, we compute stacks of anomaly profiles from different areas in the Indian and the Pacific oceans. Using a simple method based on upward continuation, we demonstrate that, the tiny wiggles are consistent worldwide although their patterns exhibit different resolutions at different spreading rates. They are therefore confidently ascribed to past fluctuations of the geomagnetic dipole moment. A high resolution record of these fluctuations is obtained by selecting and stacking profiles from areas with the highest spreading rates. Modeling the micro-anomalies as short magnetic polarity intervals yields durations for these intervals generally shorter than 10 kyr, likely too short to be indeed “true” subchrons. Moreover, the number of detected tiny wiggles clearly depends on the spreading rate. These results support geomagnetic intensity fluctuations as being the cause of most tiny wiggles, as also suggested by recent magnetostratigraphic data. The tiny wiggles are uniformly distributed within chrons, indicating that paleointensity fluctuations are neither inhibited after, nor enhanced before, a reversal beyond a “blind” zone of about 10 km (corresponding to 80 to 250 kyr depending on the spreading rate) for which the anomalies due to reversals prevent the detection of tiny wiggles. Most tiny wiggles probably represent a filtered record of a uniform secular variation regime, as suggested by their uniform spatial distribution over the whole investigated period.  相似文献   

5.
低磁纬度地区受斜磁化的影响,用常规方法很难准确确定磁性体的平面分布特征.为了研究位于低磁纬度地区普图马约盆地的磁性体分布特征,本文根据场的散度原理,假定磁△T异常为具有一定方向的矢量场,其方向与磁化方向一致,导出了磁△T异常视散度的计算方法;根据磁位与引力位的关系,在频率域中通过磁△T异常求取了磁源重力异常,并尝试利用拉普拉斯方程计算磁源重力异常垂向二阶导数.本文设计理论模型讨论了磁△T异常视散度、磁源重力异常垂向二阶导数的特征与磁性体平面分布特征的关系,证明了上述方法的有效性.进而利用上述方法推测了普图马约盆地磁性体的平面分布特征,结果表明:应用磁视散度及磁源重力异常确定的普图马约盆地磁性体分布与实际地质特征吻合较好,取得的成果对普图马约盆地相关地质研究及对低磁纬度地区的磁性体的确定有一定的参考意义.  相似文献   

6.
The spectral study of the Bouguer anomally map of Central India suggests an uplifted crust-mantle interface under the Mahandi graben. This study has delineated three subsurface levels of anomalous masses at the respective depths of 23 km, 8 km, and 2 km apparently representing the Moho, an intermediate discontinuity in the sialic part of the crust and the basement, respectively. Model study of the Bouguer anomaly along a profile suggests a typical continental graben type subsurface structure with a low density depression in the sialic part of the crust between 8 and 18 km supported by an elevated upper mantle of intermediate density (3.4 g/cm3) varying in depth from 25 km to 55 km. The depths of the inferred interfaces in case of Bundelkhand granite are 32 km, 11 km, and 1.5 km, which might represent the Moho, the base of intruded granite massif, and some shallow compositional variation. Similar studies in case of Vindhyan basin have brought out three discontinuities at the respective depths of 16 km, 6–4.5 km, and 2.4 km. The first horizon at the depth of 16 km probably represents the interface between the granitic and the basaltic part of the crust. The 6–4.5 km is the depth of the basement, with the 2.4 km interface separating Bijawar rocks from Vindhyans wherever they are present. A generalized inversion of a profile across a positive belt of Bouguer anomaly representing the subsurface Bijawar rocks support the above result.  相似文献   

7.
We report here the electrical resistivity measurements on two natural zeolites–natrolite and scolecite (from the Killari borehole, Maharashtra, India) as a function of pressure up to 8 GPa at room temperature. High-pressure electrical resistivity studies on hydrous alumino-silicate minerals are very helpful in understanding the role of water in deep crustal conductivities obtained from geophysical models. The results obtained by magneto-telluric (MT) soundings and direct current resistivity surveys, along with the laboratory data on the electrical resistivity of minerals and rocks at high-pressure–temperature are used to determine the electrical conductivity distribution in continental lithosphere. The electrical resistivity of natural natrolite decreases continuously from 2.9 × 109 Ω cm at ambient condition to 7.64 × 102 Ω cm at 8 GPa, at room temperature. There is no pressure-induced first order structural phase transitions in natrolite, when it is compressed in non-penetrating pressure transmitting medium up to 8 GPa. On the other hand scolecite exhibits a pressure-induced transition, with a discontinuous decrease of the electrical resistivity from 2.6 × 106 to 4.79 × 105 Ω cm at 4.2 to 4.3 GPa. The observed phase transition in scolecite is found to be irreversible. Vibrational spectroscopic and X-ray diffraction studies confirm the amorphous nature of the high-pressure phase. The results of the present high-pressure studies on scolecite are in good agreement with the high-pressure Raman spectroscopic data on scolecite. The thermo gravimetric studies on the pressure-quenched samples show that the samples underwent a pressure-induced partial dehydration. Such a pressure-induced partial dehydration, which has been observed in natural scolecite could explain the presence of high conductive layers in the earth's deep-crust.  相似文献   

8.
The pahoehoe–aa transition for a flow exposed near Bodshil village from the western part of the Deccan Volcanic Province (DVP) is reported for the first time. The 1-km-long Bodshil flow issued as a small sheet from a pre-existing lobe. Near the source, the crust is characterised by numerous squeeze-ups. A number of gaping fractures, parallel to sub-parallel to the flow direction, are exposed on the surface in the medial portion of the flow. About 800 m away, the flow completely transforms to slabby pahoehoe. The terminal portion of the flow is characterised by concentrations of slabs, blocks and lava balls. The size and concentrations of the slabs and lava balls appear to increase along the length of the flow. Petrographic studies reveal a dominant hypohyaline texture. The flow core is coarse and is characterised by plagioclase set in a glassy matrix. The presence of clinopyroxene in addition to plagioclase and glass distinguishes the crust and interslab crust from the core. On the basis of mineralogy, a temperature range of 1146±15°C to 1169±15°C is inferred for the Bodshil flow. Increased vesicle deformation across the transition is discernible and an average D-value of <0.4 indicates moderate strain rates during emplacement. In light of the morphology and petrography, the cooling history and the mode of emplacement of the Bodshil flow is discussed. The flow originated as a small toe at the leading edge of a pahoehoe flow, and grew into a sheet by the mechanism of inflation. Continuous inflation caused the brittle crust to uplift and produce a network of inflation clefts that were subsequently occupied by squeeze-ups. Temporary stagnation of the flow due to cessation of lava supply or storage allowed the crust to grow and thicken. Renewed movement of the stored and cooled lava to the flow front at a fairly high volumetric rate was responsible for the initial disruption of the crust. High rates of crustal disruption induced higher rates of degassing and cooling, which resulted in rapid crystallisation of the fluid core. Increase in crystallinity lead to the onset of yield strength, and it is envisaged that at least the terminal parts of the flow behaved as a Bingham fluid. The Bodshil flow is unique to the DVP because it is the first to record slabby pahoehoe and provide evidence for the incipient transformation of basaltic lava from pahoehoe to aa.  相似文献   

9.
We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3–7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02′S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48′S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an  18 km2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005−06 at the East Pacific Rise, 9°50′N and reference to global seismic catalogues reveals that a swarm of large (M 4.6−5.6) seismic events was centred on the 5°S segment over a  24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at  3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.  相似文献   

10.
The usefulness of large‐scale, low‐relief, high‐level landscapes as markers of uplift events has become a subject of disagreement among geomorphologists. We argue that the formation of low‐relief surfaces over areas of large extent and cutting across bedrock of different age and resistance must have been guided by distinct base levels. In the absence of other options the most likely base level is sea level. We have analysed West Greenland landscapes in a recent study by combining the cooling history from apatite fission‐track analysis (AFTA) data with the denudation history from landscape analysis and the stratigraphic record. An important difference between our approach and that of classical geomorphology is that we now have the ability to document when thick sections of rocks have been deposited and then removed. The present‐day high‐level plateau in West Greenland is the remnant of a planation surface that was formed by denudation that lasted c. 20 million years during which up to 1 km of cover was removed after maximum burial at the Eocene–Oligocene transition. Here we present additional AFTA data to show that the planation surface is the end‐product of Cenozoic denudation even in basement areas and argue that Phanerozoic sediments – most likely of Cretaceous–Palaeogene age – must have been present prior to denudation. The planation surface was offset by reactivated faults and uplifted to present‐day altitudes of up to 2 km. The uplift occurred in two late Neogene phases that caused incision of valleys below the planation surface and their subsequent uplift. We therefore find that the elevated and deeply dissected plateau is evidence of episodic post‐rift uplift that took place millions of years after cessation of sea‐floor spreading west of Greenland. We suggest that other margins with similar morphology may also be characterized by episodic post‐rift uplift unrelated to the processes of rifting and continental separation, rather than being permanently uplifted since the time of rifting, as is commonly assumed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   

12.
A new classification scheme has been developed to assign the lava flows of the Paraná continental flood basalt province (South America) into geochemically distinct magma types, with six basaltic major and trace element abundances and/or ratios. By mapping out the spatial distribution of these magma types within the lava sequences, it has been possible to determine the internal stratigraphy of the lava pile on a regional scale. Previous studies on road profiles traversing the well-exposed coastal Serra Geral escarpment of southern Brazil are summarised together with results from some new sampled sections. More widespread stratigraphical investigations of the Paraná lavas have been hampered by the lack of sufficient topographic relief and the cover of sedimentary rocks. However, access to drill-core chippings from nine boreholes in the central Paraná region has provided a unique opportunity to investigate the stratigraphy of the otherwise inaccessible deeper levels of the lava pile and to map out stratigraphic variations in three dimensions. The borehole samples have indicated cated a stacking of units of different magma types all overlapping towards the north, which suggests that the main locus of magmatism moved northwards with time within the Paraná basin. This migration could be related to the northward propagation of rifting during the initiation of the South Atlantic Ocean. Maps of the surface distribution of samples of each magma type show a pattern consistent with the stratigraphy inferred from the boreholes, although suggesting that the shift in magmatism may have been towards the northwest. On the basis of geochemical similarities between magma types and their inferred stratigraphical relationships, it is proposed that the Paraná can be divided into two principal magmatic centres: (1) an older one in the south, comprising the Gramado, Esmeralda and Urubici magma types; and (2) a younger one, developed about 750 km to the north, formed by the Pitanga, Paranapanema and Ribeira magma types.  相似文献   

13.
The Bouguer anomaly and the total intensity magnetic maps of Saurashtra have delineated six circular gravity highs and magnetic anomalies of 40-60 mGal (10−5m/s2) and 800-1000 nT, respectively. Three of them in western Saurashtra coincide with known volcanic plugs associated with Deccan Volcanic Province (DVP), while the other three in SE Saurashtra coincide with rather concealed plugs exposed partially. The DVP represents different phases of eruption during 65.5±2.5 Ma from the Reunion plume. The geochemical data of the exposed rock samples from these plugs exhibit a wide variation in source composition, which varies from ultramafic/mafic to felsic composition of volcanic plugs in western Saurashtra and an alkaline composition for those in SE Saurashtra. Detailed studies of granophyres and alkaline rocks from these volcanic plugs reveal a calc-alkaline differentiation trend and a continental tectonic setting of emplacement. The alkaline plugs of SE Saurashtra are associated with NE-SW oriented structural trends, related to the Gulf of Cambay and the Cambay rift basin along the track of the Reunion plume. This indicates a deeper source for these plugs compared to those in the western part and may represent the primary source magma. The Junagadh plug with well differentiated ring complexes in western Saurashtra shows well defined centers of magnetic anomaly while the magnetic anomalies due to other plugs are diffused though of the same amplitude. This implies that other plugs are also associated with mafic/ultramafic components, which may not be differentiated and may be present at subsurface levels. Paleomagnetic measurements on surface rock samples from DVP in Saurashtra suggest a susceptibility of 5.5×10−2 SI units with an average Koenigsberger ratio (Qn) of almost one and average direction of remanent magnetization of D=147.4° and I=+56.1°. The virtual geomagnetic pole (VGP) position computed from the mean direction of magnetization for the volcanic plugs and Deccan basalt of Saurashtra is 30°N and 74°W, which is close to the VGP position corresponding to the early phases of Deccan eruption. Modeling of gravity and magnetic anomalies along two representative profiles across Junagadh and Barda volcanic plugs suggest a bulk density of 2900 and 2880 kg/m3, respectively and susceptibility of 3.14×10−2 SI units with a Qn ratio of 0.56 which are within the range of their values obtained from laboratory measurements on exposed rock samples. The same order of gravity and magnetic anomalies observed over the volcanic plugs of Saurashtra indicates almost similar bulk physical properties for them. The inferred directions of magnetization from magnetic anomalies, however, are D=337° and 340° and I=−38° and −50° which represent the bulk direction of magnetization and also indicate a reversal of the magnetic field during the eruption of these plugs. Some of these plugs are associated with seismic activities of magnitude ≤4 at their contacts. Based on this analysis, other circular/semi-circular gravity highs of NW India can be qualitatively attributed to similar subsurface volcanic plugs.  相似文献   

14.
Understanding the petrologic and geochemical evolution of island arcs is important for interpreting the timing and impacts of subduction and processes leading to the formation of a continental crust. The Izu–Bonin–Mariana (IBM) Arc, western Pacific, is an outstanding location to study arc evolution. The IBM first arc (45–25 Ma) followed a period of forearc basalt and boninite formation associated with subduction initiation (52–45 Ma). In this study, we present new major and trace element data for the IBM first arc from detrital glass shards and clasts from DSDP Site 296, located on the northernmost Kyushu Palau Ridge (KPR). We synthesize these data with published literature for contemporaneous airfall ash and tephra from the Izu–Bonin forearc, dredge and piston core samples from the KPR, and plutonic rocks from the rifted eastern KPR escarpment, locations which lie within or correlate with KPR Segment 1 of Ishizuka, Taylor, Yuasa, and Ohara (2011). Our objective is to test ways in which petrologic and chemical data for diverse igneous materials can be used to construct a complete picture of this section of the Oligocene first arc and to draw conclusions about its evolution. Important findings reveal that widely varying primary magmas formed and differentiated at various depths at this location during this period. Changes in key trace element ratios such as La/Sm, Nb/Yb, and Ba/Th show that mantle sources varied in fertility and in the inputs of subducted sediment and fluids over time and space. Plutonic rocks appear to be related to early K‐poor dacitic liquids represented by glasses sampled both in the forearc and volcanic fronts. An interesting observation is that the variation in magma compositions in this relatively small segment encompasses that inferred for the IBM Arc as a whole, suggesting that sampling is a key factor in inferring temporal, across‐arc, and along‐strike geochemical trends.  相似文献   

15.
南海东部海盆扩张过程的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
南海的形成演化一直是国内外关注的热点之一,南海的扩张发生在早渐新世-早中新世,并且在南海的扩张中至少包括一次洋脊跃迁.本文采用上升离散地幔流和热对流耦合模型模拟了南海东部海盆扩张、洋中脊跃迁和扩张停止后岩石圈的热结构演化和岩浆熔融过程.数值模拟结果表明,洋中脊跃迁是南海扩张中的一个重要的过程,由于洋脊跃迁使得在两洋脊之间形成一个部分熔融岩浆区,岩浆部分熔融的存在使洋脊之间海底火山分布也相对较多以及地形相对较高,同时造成南侧的洋脊两侧地形以及海山都分布不对称的现象,这反过来也能论证跃迁模型的可行性.  相似文献   

16.
磁法探测地下核爆炸初探   总被引:1,自引:2,他引:1       下载免费PDF全文
从核核查角度探讨了地下核爆炸产生磁异常的机理,并对磁法探测地下核爆炸可行性进行了分析研究,结合我们的一些试验研究认,为通过分析处理地下核爆炸的磁异常可以达到核核查目的.  相似文献   

17.
国产I-4C型OBS在西南印度洋中脊的试验   总被引:6,自引:4,他引:6       下载免费PDF全文
介绍了在DY115-21航次第6航段西南印度洋中脊构造调查中,中国科学院地质与地球物理研究所研制的5台I-4C型海底地震仪(OBS)的试验情况.在不同的水深点(2370~3534 m)共投放OBS 6个台次,全部投放和回收成功.OBS内置电化学式和外置机械式两种上浮释放系统都成功动作,取得了船载气枪震源的地震数据.但仍存在三个主要问题:第一,上浮后的GPS应答搜寻系统无效果;第二,夜间回收时所需的灯光明亮度较差;第三,外在结构不利于海面上的姿态控制和打捞.  相似文献   

18.

重、磁勘探具有效率高、成本低、工作范围广等优点,已在地球物理勘探中得到了广泛应用.前人大多在不考虑重、磁勘探观测精度的条件下进行了垂向识别能力的研究,但在考虑重、磁观测精度条件下,重力(重力异常、重力张量)与磁力(磁力异常、磁力三分量、磁力张量)对孤立异常的垂向识别能力如何则需要进行深入的理论研究.本文从重、磁场正演理论出发,以球体(点源模型)和无限延伸水平圆柱体(线源模型)为例,考虑给定观测精度条件下,以重力和磁力幅值大小与观测精度的关系来研究垂向识别能力,从而消除了背景场的影响,提高了研究结果的可靠度.通过研究表明,对于孤立异常,重力张量在浅部一定深度内比重力异常的垂向识别能力强,该深度与重力异常和重力张量观测精度的比值成正比;垂直磁化磁力张量在浅部一定深度内比化极磁力异常的垂向识别能力强,该深度与磁力异常与磁力张量观测精度的比值成正比;磁力在浅部一定深度内比重力的垂向识别能力强,该深度与地质体的磁化强度和剩余密度比值、重力观测精度和磁力观测精度比值成正比.通过重力和磁力垂向识别能力的研究将为重、磁勘探的实际应用起到指导作用.

  相似文献   

19.
重、磁勘探具有效率高、成本低、工作范围广等优点,已在地球物理勘探中得到了广泛应用.前人大多在不考虑重、磁勘探观测精度的条件下进行了垂向识别能力的研究,但在考虑重、磁观测精度条件下,重力(重力异常、重力张量)与磁力(磁力异常、磁力三分量、磁力张量)对孤立异常的垂向识别能力如何则需要进行深入的理论研究.本文从重、磁场正演理论出发,以球体(点源模型)和无限延伸水平圆柱体(线源模型)为例,考虑给定观测精度条件下,以重力和磁力幅值大小与观测精度的关系来研究垂向识别能力,从而消除了背景场的影响,提高了研究结果的可靠度.通过研究表明,对于孤立异常,重力张量在浅部一定深度内比重力异常的垂向识别能力强,该深度与重力异常和重力张量观测精度的比值成正比;垂直磁化磁力张量在浅部一定深度内比化极磁力异常的垂向识别能力强,该深度与磁力异常与磁力张量观测精度的比值成正比;磁力在浅部一定深度内比重力的垂向识别能力强,该深度与地质体的磁化强度和剩余密度比值、重力观测精度和磁力观测精度比值成正比.通过重力和磁力垂向识别能力的研究将为重、磁勘探的实际应用起到指导作用.  相似文献   

20.
We study the thermal structure around a cold deformable lithospheric slab as it sinks to the core–mantle boundary and migrates along it. We present analytical results for the steady thermal structure established by a steady but spatially varying motion. The analysis gives a time-like criterion for the thermal signature of a cold slab to persist by the time that the slab moves along the core–mantle boundary. The model is used to assess the feasibility of a purely thermal origin for some of the observed seismic reflectors near the core–mantle boundary. Calculations of the time-like criterion show that the dynamical conditions in our model, namely the velocity and the thickness of the descending slab, are hard to reconcile with observations of subduction and seismic features. Seismic reflections and refractions from anomalously fast regions above the core–mantle boundary could be explained as thermal slabs if the thickness of the slab at subduction was larger than 200 km or somewhat less if the slab did not split at the core–mantle boundary. A simple thermal model also predicts from mineral physics a certain correlation between S- and P-wave velocity anomalies, which is not observed. However, a purely thermal origin cannot be ruled out if the slab is buckling. This process could be in agreement with the observations: the amplitude of the seismic anomalies, the vertical extent of high-gradient zones and the P versus S comparisons. Chemical heterogeneities and phase transformations remain alternative or complementary explanations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号