共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotope geochemistry of igneous rocks 总被引:34,自引:0,他引:34
Hugh P. Taylor Jr. 《Contributions to Mineralogy and Petrology》1968,19(1):1-71
Oxygen isotope analyses have been obtained for 443 igneous rock and mineral samples from various localities throughout the world. Detailed studies were made on the Medicine Lake, Newberry, Lassen, Clear Lake, S. E. Guatemala, Hawaii and Easter I. volcanic complexes and on the Bushveld, Muskox, Kiglapait, Guadalupe, Duluth, Nain, Egersund, Lac St. Jean, Laramie, Skaergaard, Mull, Skye, Ardnamurchan and Alta, Utah plutonic complexes, as well as upon several of the zoned ultramafic intrusions of S. E. Alaska. Basalts, gabbros, syenites and andesites are very uniform in O18/O16, commonly with δ-values of 5.5 to 7.0 per mil. Many rhyolite obsidians, particularly those from oceanic areas and the Pacific Coast of the United States, also lie in this range; this indicates that such obsidians are differentiates of basaltic or andesitic magma at high temperatures (about 1,000° C). They cannot represent melted sialic crust. The only plutonic granites with such low δ-values are some of the hypersolvus variety, suggesting that these also might form by fractional crystallization. Obsidians from the continental interior, east of the quartz-diorite line, have higher δ-values. This is compatible with their having assimilated O18-rich sialic crust. A correlation generally exists between the O18/O16 ratios of SiO2-rich differentiates and the chemical trends in volcanic complexes. High O18/O16 ratios accompany those trends having the lower Fe/Mg ratios, while ferrogabbro trends are associated with depletion in O18. Variations in oxygen fugacity may be responsible for these effects, as abundant early precipitation of magnetite should lead to both O18-enrichment and Fe-depletion in later differentiates. Plutonic granites have higher O18/O16 ratios than their volcanic equivalents, because (a) their differentiation occurred at much lower temperatures, or (b) they are in large part derived from O18-rich sialic crust by partial melting or assimilation. Also, the oxygen isotope fractionations among coexisting minerals are distinctly larger in plutonic rocks than in volcanic rocks. This is in keeping with their lower crystallization temperatures and their longer cooling history, which promotes post-crystallization oxygen isotope exchange. Hydrated obsidians and perlites have δO18-values that are much different from their primary, magmatic values. A correlation exists between D/H and O18/O16 ratios in hydrated volcanic glass from the western U.S.A., proving that the isotopic compositions are a result of exchange with meteoric waters. The O18 contents of the glasses appear to be about 25 per mil higher than their associated waters; hence, these hydrated glasses have not simply absorbed H2O, but they have exchanged with large quantities of it. The igneous rocks from Mull, Skye, Ardnamurchan and the Skaergaard intrusion are all abnormally depleted in O18 relative to “normal” igneous rocks. This is a result of their having exchanged at high temperatures with meteoric water that was apparently abundant in the highly jointed plateau lavas into which these igneous rocks were intruded. In part, this exchange occurred with liquid magma and in part with the crystalline rock; in the latter case the feldspar was more easily exchanged and has become much more depleted in O18 than has coexisting quartz or pyroxene. The later differentiates of the Muskox intrusion are markedly O18-rich, but this is not a result of fractional crystallization. It is in large part a result of deuteric exchange between feldspars and an oxygen-bearing fluid (H2O ?) that was either O18-rich or had a relatively low temperature. This phenomenon was also observed in a number of granophyres from other localities, particularly those containing brick-red alkali feldspar. The exchanged feldspars in all these examples are turbid or cloudy, and may be filled with hematite dust. It is concluded that most such feldspar in nature is the result of deuteric exchange and is probably drastically out of oxygen isotopic equilibrium with its coexisting quartz. 相似文献
2.
The 1.78 Ga Xiong'er Volcanic Province (XVP) and coeval North China giant mafic Dyke Swarm (NCDS) are the most important magmatic events occurring after the amalgamation of the North China craton (NCC). The XVP consists of 3–7 km of extrusive volcanics and some feeder dykes/sills located along the southern margin of the NCC and extending over an area > 0.06 M km2. Compositions vary from basalt to rhyolite, but are predominantly intermediate in terms of silica content. There are also minor sedimentary intercalations and pyroclastic units. The sedimentary interlayers indicate an environment changing from continental-facies to oceanic-facies up-section. The XVP is characterized by fractional crystallization from an EM I type mantle source, and both continental arc (Andean-type) and rift environments have been proposed. The NCDS is widespread in the central NCC with an outcrop area > 0.1 M km2, and are exposed at variable depths up to 20 km (deepest in the north). Dyke compositions vary from basalt to andesite and dacite, but are dominantly mafic, and comprise two series of magmatism. Previous studies revealed that the NCDS recorded assimilation and fractional crystallization of an EM I type magma source, with a minor DM contribution in the younger magmas. Both syn-collisional and intra-continental anorogenic environments have been proposed. Spatial and petrogenic correlations suggest a cogenetic relationship between the NCDS and XVP, and considered together, they define a Large Igneous Province (LIP) of > 0.1 M km2 in area and > 0.1 M km3 in volume, which is also notable for its continuous compositional range from mafic to felsic (with no gap at intermediate compositions). The petrology is explained by a common magma source that undergoes a silica-poor and iron-enriched fractionation trend at depth followed by a silica-rich and iron-poor fractionation trend in shallow-level magma conduits (dykes) and surface lavas. A mantle plume is favored as the cause of this 1.78 Ga North China LIP. 相似文献
3.
《International Geology Review》2012,54(13):1464-1477
We propose that inherited Neoproterozoic zircons in Mesozoic igneous rocks from the eastern portion of the North China craton (NCC) were initially derived from the Yangtze/South China block, rather than from the NCC itself. The mechanism that introduced these zircons into the NCC was likely tectonic underplating during Triassic continental subduction/collision of the Yangtze block beneath the NCC. The addition of abundant crustal materials represented by the exotic zircons, probably along the Moho or weak interfaces within the NCC crust, led to the crustal thickening of the NCC. These sialic materials contributed significantly to the Mesozoic igneous rocks, either as source rocks or as contaminants of magmas generated during an extensional environment following crustal thickening. Crustal thickening was spatially linked to lithospheric thinning, with both occurring mainly in the eastern segment of the NCC, suggestive of an intrinsic relationship between thickening and thinning events during Mesozoic evolution of the NCC. 相似文献
4.
Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province 总被引:4,自引:0,他引:4
The nature of the source of continental flood basalts (CFB) is a highly debated topic. Proposed mantle sources for CFBs, including both high- and low-Ti basalts, include subcontinental lithospheric mantle (SCLM), asthenospheric mantle, and deep, plume-related mantle. Re-Os isotope systematics can offer important constraints on the sources of both ocean island basalts (OIB) and CFB, and may be applied to distinguish different possible melt sources. This paper reports the first Re-Os isotope data for the Late Permian Emeishan large igneous province (LIP) in Southwest China. Twenty one CFB samples including both low- and high-Ti basalts from five representative sites within the Emeishan LIP have been analyzed for Os, Nd, and Pb isotopic compositions. The obtained Os data demonstrate that crustal assimilation affected Os isotopic compositions of some Emeishan basalt samples with low Os concentrations but not all of the samples, and the Emeishan basalts with high Os contents likely experienced the least crustal contamination. The low and high-Ti basalts yield distinct Os signatures in terms of 187Os/188Os and Os content. The low-Ti basalt with the highest Os concentration (400 ppt) has a radiogenic Os isotopic composition (γOs(t), +6.5), similar to that of plume-derived OIB. Because the Os isotopic composition of basalts with relatively high Os concentrations (typically >50 ppt) likely represents that of their mantle source, this result implies a plume-derived origin for the low-Ti basalts. On the other hand, the high-Ti basalts with high Os concentration (over 50 ppt) have unradiogenic Os isotopic signatures (γOs(t) values range from −0.8 to −1.4), suggesting that a subcontinental lithosphere mantle (SCLM) component most likely contributed to the generation of these magmas. Combining Pb and Nd isotopic tracers with the Os data, we demonstrate that the low-Ti basaltic magmas in the Emeishan CFB were mainly sourced from a mantle plume reservoir, whereas the high-Ti basaltic magmas were most likely derived from a SCLM reservoir or were contaminated by a significant amount of lithospheric mantle material during plume-related magma ascent through the SCLM. 相似文献
5.
I.V. Romanova A.E. Vernikovskaya V.A. Vernikovsky N.Yu. Matushkin A.N. Larionov 《Russian Geology and Geophysics》2012,53(11):1176-1196
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma. 相似文献
6.
The Mesoproterozoic Gawler Silicic Large Igneous Province (SLIP) in the Gawler Craton and Curnamona Province, southern Australia, comprises extensive felsic and lesser mafic volcanic sequences, with only limited sedimentary successions. The Roopena Basin is a rare example of a synvolcanic sedimentary basin that formed within the Gawler SLIP in the eastern Gawler Craton. It is a north–south-trending basin with a preserved area of 75 km2, bound by the Roopena and Wizzo Well faults, and contains three units of the lower Gawler Range Volcanics; the Angle Dam Dacite, Fresh Well Formation and Roopena Basalt. The Angle Dam Dacite is a porphyritic lava and the oldest part of the volcanic succession, directly overlying basement. The Fresh Well Formation overlies the Angle Dam Dacite or basement, comprises three coarsening-upwards volcaniclastic packages of claystone, siltstone, fine-grained to coarse-grained lithic sandstone and conglomerate deposited in a fluvio-lacustrine setting, and contains three tuff members. The Roopena Basalt is interlayered with the Fresh Well Formation, and comprises auto-brecciated lavas that exhibit only local interaction with water or wet sediment. Sharp basal contacts of the prograding packages within the Fresh Well Formation provide evidence of rapid flooding events within the basin. New detrital zircon geochronology of a sandstone within the Fresh Well Formation yielded a maximum depositional age of ca 1580 Ma, with provenance dominated by felsic volcanic units of the 1635–1605 Ma St Peter Suite. Sedimentation in the Gawler SLIP appears to have occurred in isolated basins with limited areal extent. It was largely restricted to the eastern Gawler Craton, and as well as the Roopena Basin, and includes similar basins at the Olympic Dam and Prominent Hill iron oxide–copper–gold ± uranium (IOCG ± U) deposits. The coincidence of sedimentation and mafic volcanism in the eastern Gawler Craton suggests that this region underwent extension at this time, although high-temperature metamorphism and compressional deformation occurred in some parts of the Gawler Craton and Curnamona Province synchronous with the Gawler SLIP. The Roopena Basin sedimentary rocks and underlying basement contain hematite–chlorite–sericite–white mica assemblages, permissive of hematite-style IOCG mineral deposits; however, no significant ore deposit has yet been discovered in the Roopena Basin. 相似文献
7.
8.
《International Geology Review》2012,54(15):1927-1939
ABSTRACTThe 87Sr/86Sr minimum of the Capitanian seawater is one of the most significant features in the Phanerozoic seawater 87Sr/86Sr history. In order to assess possible contribution of the Emeishan large igneous provinces (LIPs) to strontium isotope evolution of the Capitanian seawater, 87Sr/86Sr ratios were measured from the Capitanian limestones which are locally interlayered with the Emeishan basalts. The limestones underlying the Emeishan basalts have high 87Sr/86Sr ratios (0.7070–0.7074). However, extremely low 87Sr/86Sr ratios (0.7068–0.7070) were identified in the late Capitanian Jinogondolella prexuanhanensis–J. xuanhanensis zones, which correspond to the eruption time of the Emeishan LIP. The temporal coincidence of these two phenomena supports the idea of a potential linkage between Capitanian 87Sr/86Sr minimum and eruption of this igneous province. The strong submarine hydrothermal activity and erosion of the Emeishan LIP could have released large amounts of non-radiogenic Sr to the oceans and play an important role in strontium isotope evolution of the seawater. 相似文献
9.
D.P. Gladkochub T.V. Donskaya M.T.D. Wingate A.M. Mazukabzov S.A. Pisarevsky T.A. Kornilova 《Russian Geology and Geophysics》2013,54(11):1340-1351
Geological observations and petrological and geochemical criteria are used to detect hybrid rocks at the endocontact of a dolerite dike. The hybrid rocks were produced when the material of a mafic intrusion mixed with a felsic melt. The latter was produced by the melting of the metamorphic rocks making up the Goloustnaya basement inlier of the Siberian craton, under the thermal effect of the intruded dike. Two age groups of zircon have been identified in the hybrid rock by SHRIMP analysis. The Paleoproterozoic age of inherited zircon (1902, 1864, 1859, and 1855 Ma) reflects the contribution of ancient sources to the hybrid-rock composition. The young, primary-magmatic, zircon grains, produced by melting at the endocontact of the mafic intrusion (494 ± 5 Ma), are coeval with the hybrid rocks, and their age indicates when the mafic rocks intruded the metamorphic framework. Dikes of close age, with similar geochemical characteristics, are present on the vast southern margin of the Siberian craton—from Goloustnaya to Biryusa salients. 相似文献
10.
《Chemie der Erde / Geochemistry》2023,83(2):125958
The origin of silicic rocks (SiO2 > 65 wt%) in Continental Flood Basalt (CFB) provinces could be attributed to complex petrogenetic processes. The 65.5–66 Ma old Deccan Traps CFB contains eight sporadic but significant silicic rock exposures that are studied here in a comprehensive framework using field observations, petrography, major oxides (n = 56), and trace element chemistry. Rhyolite and granophyre, as well as subordinate felsite, ignimbrite, trachyte, pitchstone, and microgranite coexist with volcanic and plutonic mafic rocks such as basalt, basaltic andesite, and gabbro. Multiple isolated and circular/semi-circular hills and linear dykes of silicic rocks are present in the form of lavas with prominent flow folding, rheomorphic ignimbrite, and tuffs. The ‘Rheological Agpaitic Index’ (RAI) indicates that most of the silicic rocks in the Deccan Traps are effusive in nature, except for Rajpipla, Alech, Bombay, and Osham silicic rocks, which are marked by explosive volcanism. Thermodynamic-based Rhyolite-MELTS modelling suggests that the major oxide composition of Pavagadh and Barda basalt is a likely candidate for the parental melt composition of the silicic rocks of the Deccan Traps. Ba, Sr, P, Zr, and Ti anomalies are consistent with the fractionation of K-feldspar, plagioclase, apatite, zircon, and Fe-Ti oxides, respectively. Two broad REE patterns are noticed in the Deccan Traps silicic rocks: a flat pattern for Barda, Alech, and Chogat-Chamardi silicic rocks, and a steep REE pattern for Osham, Rajula, Pavagadh, Rajpipla, and Bombay silicic rocks. Trace element modelling reveals that 5–10 % partial melting of a spinel peridotite source could produce an REE pattern and abundances similar to the associated basalts. Further extensive fractional crystallization (60–90 %) of the parental mafic melt at a deeper depth (where spinel is stable) could produce the REE composition and pattern observed in most silicic rocks except for those of Barda, Alech, and Chogat-Chamardi, which require fractional crystallization of the same parental melt at a shallower depth (where spinel is not stable). The geochemical variability of Deccan Traps silicic rocks reveals an origin from a mantle-derived parental mafic melt that evolved via the assimilation and fractional crystallization (AFC) process to form the silicic exposures, which is typical of silicic volcanism in other global CFBs. 相似文献
11.
12.
东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据 总被引:7,自引:8,他引:7
祁漫塔格山西段鸭子泉祁漫塔格群中发育有中基性火成岩,岩石类型主要为角闪辉长岩、闪长岩、玄武岩及安山岩.其主要地球化学及同位素特征为:(1)基性岩样品的SiO2含量为47.93%~50.54%,MgO为3.40%~6.24%,全铁FeOT为11.24%~14.10%,主要为拉斑玄武岩系列;中性岩样品的SiO2含量为51.5%~59.59%,MgO为2.05~6.42%,全铁FeOT含量为5.65%~9.38%,属于拉斑-钙碱性系列岩石组合;(2)基性及中性火成岩稀土配分型式均为LREE富集的右倾型,(La/Yb)N为1.44~11.69;(3)富集大离子亲石元素Sr、Ba、Th、U,而相对亏损高场强元素P、Zr、Ti等,Nb为明显的负异常,而Ta显示弱负异常;(4)εNd(t=480Ma)介于+1.1~+7.9之间,表明该中基性火成岩在形成过程中受到过俯冲地壳物质的混染.上述特征说明鸭子泉中基性火成岩可能形成于岛孤环境.对闪长岩样品中的锆石进行LA-ICP-MS U-Pb同位素分析,获得206 pb/238U加权平均年龄为480±3Ma,代表了闪长岩的形成时间,这表明在早奥陶世祁漫塔格洋已经存在并开始俯冲,形成鸭子泉岛弧火成岩. 相似文献
13.
An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks 总被引:25,自引:0,他引:25
The most commonly used tectonic discrimination diagrams for granites were introduced by Pearce et al. [Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983.]. Since then, many studies have shown that some granites defy classification or their geochemical assignment does not fit with the geodynamic environment in which they are thought to have formed. In this paper we evaluate the performance of the Pearce et al. tectonic discrimination method, specifically, the most widely-used Rb-(Y + Nb) diagram, using a new data base of over 250 occurrences worldwide, the tectonic settings of which are fairly well known. We conclude that a correlation of geochemistry and tectonic position exists, but that ambiguities and misclassifications arise from one or both of the following factors. First, complex or polyphase orogeny can mix source rocks of different tectonic provenance. This is common in continental arcs and collisional settings, which can be closely associated in space and time with extensional regimes. Second, differentiation can produce compositional trends which cross field boundaries, especially the VAG to WPG boundary. One can minimize this problem by using less felsic, noncumulate members of cogenetic series.
We demonstrate the inherent weaknesses of trace element tectonic discrimination diagrams. Such diagrams are of little use if applied alone, but they can be valuable in combination with other methods such as dating and geologic assessment. 相似文献
14.
稀有气体被广泛用作地球化学示踪剂,本文对塔里木大火成岩省西北缘瓦吉里塔格霞石岩中的橄榄石和辉石单矿物进行了稀有气体同位素测定。结果表明,瓦吉里塔格霞石岩中的橄榄石和辉石单矿物具有较低的~3He/~4He值(分别为2.0~2.4 Ra和0.65~0.85 Ra)和略高于大气值的~(40)Ar/~(36)Ar值(342.3~651.7),反映了由古板块俯冲导致的较低的He、Ar同位素比值特征。研究表明,早中古生代南天山洋向南俯冲到塔里木板块之下,将富U或富~4He以及含有大气组分的流体带入到深部地幔,在塔里木地幔柱的作用下地幔源区发生低程度部分熔融产生霞石岩岩浆。 相似文献
15.
Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province,SW China 总被引:4,自引:0,他引:4
Christina Yan Wang Mei-Fu Zhou Liang Qi 《Contributions to Mineralogy and Petrology》2011,161(2):237-254
Sulfide-poor mafic layered intrusions, sills/dykes and lava flows in the Funing region, SW China, are part of the ~260 Ma
Emeishan large igneous province. They belong to either a high-Ti group (TiO2 = 1.6–4.4 wt%) with elevated Ti/Y ratios (351–1,018), or a low-Ti group (TiO2 < 1.2 wt%) with low Ti/Y ratios (133–223). This study investigates the role of fractionation of olivine, chromite and sulfide
on the distributions of chalcophile elements, Ni, Cu and PGE, of the high-Ti and low-Ti group rocks at Funing. The high-Ti
group rocks contain 1.6–5.3 ppb Pt + Pd, 0.06–0.43 ppb Ir and 0.01–0.13 ppb Ru, and show relative constant (Cu/Pd)PM ratios (4.0–9.7) and a negative correlation between Ni/Pd and Cu/Ir ratios. Fractionated IPGE/PPGE patterns and very negative
Ru anomalies of the high-Ti group rocks, together with low Fo values (59–62 mol%) of olivine, indicate that the high-Ti magmas
may have experienced fractionation of olivine and chromite under S-undersaturated condition. Based on the PGE concentrations,
the low-Ti group rocks can be further divided into two subgroups; a high-PGE low-Ti subgroup and a low-PGE low-Ti subgroup.
The high-PGE low-Ti group rocks are rich in MgO (10–20 wt%), but Fo values of olivine from the rocks are low (74–76 mol%).
The rocks contain highly variable PGE (Pt + Pd = 1.7–88 ppb, Ir = 0.05–1.3 ppb), Ni (179 –1,380 ppm) and Cu (59–568 ppm).
They have Cu/Zr ratios >1, low (Y/Pd)PM ratios (0.2–7.1) and nearly constant (Cu/Pd)PM ratios (1.5–3.8). The even and parallel chalcophile element patterns of the high-PGE low-Ti subgroup rocks are likely a result
of olivine-dominated fractionation under S-undersaturated condition. The low-PGE low-Ti group rocks have low MgO (4.5–8.9 wt%)
and very poor PGE (Pt + Pd 0.5–1.6 ppb, Ir 0.004–0.02 ppb) with low Cu/Zr ratios (0.1–0.5), high (Y/Pd)PM (26–70) and variable (Cu/Pd)PM ratios (2.8–14). The trough-like chalcophile element patterns of the low-PGE low-Ti subgroup rocks indicate that the magmas
were sulfide saturation and sulfide melts were extracted from the magmas. The extracted sulfide melts might be potential Ni–Cu
sulfide ores at depth in the Funing region. 相似文献
16.
内蒙古中部苏尼特左旗地区早古生代火成岩年代学、地球化学、锆石Hf同位素特征及其构造意义 总被引:1,自引:2,他引:1
内蒙古中部苏尼特左旗南东地区出露的早古生代花岗岩类岩石和玄武-安山岩序列,对于限定苏尼特左旗岛弧演化以及兴蒙造山带在该地区的构造演化具有重要意义。花岗岩类岩石主要由花岗闪长岩和花岗岩组成,LA-ICP-MS锆石UPb测年结果显示其形成于晚奥陶世-早志留世(441~449Ma)。花岗岩类岩石表现出高硅(Si O2=69. 60%~77. 36%)、铝(Al_2O_3=12. 70%~15. 40%),低镁(MgO=0. 19%~0. 81%)、铁(Fe2O3=0. 94%~3. 49%)的特征。此外,花岗岩类岩石εHf(t)值介于-0. 81~+5. 64之间,且二阶段模式年龄介于1119~1478Ma之间,这表明其主要来源于新生地壳的部分熔融。玄武-安山岩SiO2含量介于49. 13%~57. 82%之间,并具有较高的镁(MgO=3. 31%~6. 57%)、铁(Fe2O3=6. 54%~9. 63%)含量,且Zr/Hf比值(35. 4~37. 6)与原始地幔相应值接近,再结合该火山岩高铝(Al2O3=16. 77%~18. 34%)、高钠(Na2O=3. 46%~5. 05%)、高Th/Ce比值(0. 12~0. 25)以及Sr正异常等特征,表明其来源于俯冲交代的地幔楔的部分熔融。本次研究的所有火成岩样品均属于钙碱性系列,并表现出富集大离子亲石元素(Rb、Th、K等)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti、P等)的特征。此外,其Rb/Zr比值(0. 07~1. 0)以及Nb(4. 24×10-6~15. 17×10-6)含量与正常大陆弧接近,结合前人已报道的年代学以及地球化学资料,表明苏尼特左旗东南地区早古生代火成岩与古亚洲洋向北的俯冲演化有关。 相似文献
17.
18.
Rajesh K. Srivastava Amiya K. Samal Gulab C. Gautam 《International Geology Review》2015,57(11-12):1462-1484
Palaeoproterozoic mafic dike swarms of different ages are well exposed in the eastern Dharwar craton of India. Available U-Pb mineral ages on these dikes indicate four discrete episodes, viz. (1) ~2.37 Ga Bangalore swarm, (2) ~2.21 Ga Kunigal swarm, (3) ~2.18 Ga Mahbubnagar swarm, and (4) ~1.89 Ga Bastar-Dharwar swarm. These are mostly sub-alkaline tholeiitic suites, with ~1.89 Ga samples having a slightly higher concentration of high-field strength elements than other swarms with a similar MgO contents. Mg number (Mg#) in the four swarms suggest that the two older swarms were derived from primary mantle melts, whereas the two younger swarms were derived from slightly evolved mantle melt. Trace element petrogenetic models suggest that magmas of the ~2.37 Ga swarm were generated within the spinel stability field by ~15–20% melting of a depleted mantle source, whereas magmas of the other three swarms may have been generated within the garnet stability field with percentage of melting lowering from the ~2.21 Ga swarm (~25%), ~2.18 Ga swarm (~15–20%), to ~1.89 Ga swarm (~10–12%). These observations indicate that the melting depth increased with time for mafic dike magmas. Large igneous province (LIP) records of the eastern Dharwar craton are compared to those of similar mafic events observed from other shield areas. The Dharwar and the North Atlantic cratons were probably together at ~2.37 Ga, although such an episode is not found in any other craton. The ~2.21 Ga mafic magmatic event is reported from the Dharwar, Superior, North Atlantic, and Slave cratons, suggesting the presence of a supercontinent, ‘Superia’. It is difficult to find any match for the ~2.18 Ga mafic dikes of the eastern Dharwar craton, except in the Superior Province. The ~1.88–1.90 Ga mafic magmatic event is reported from many different blocks, and therefore may not be very useful for supercontinent reconstructions. 相似文献
19.
A. V. Stepanova E. B. Salnikova A. V. Samsonov Yu. O. Larionova S. V. Egorova V. M. Savatenkov 《Doklady Earth Sciences》2017,472(1):72-77
New data on the age and composition of doleritic dykes of the Karelian Craton on the Fennoscandian Shield are reported. Based on the results of U–Pb dating of baddeleyite, a new age episode (2404 ± 5 Ma) in the formation of basic rocks on the Karelian Craton is established. Comparison of the composition of the studied dolerite with that of dykes of the same age from other Archean cratons worldwide shows their essential similarity and allows us to suggest their formation within a single large igneous province. The data obtained support the current models of supercontinental reconstructions for the period of 2400 Ma. 相似文献