首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present UBVRCIC magnitudes of 49 comparison stars in the fields of the Seyfert galaxies Mrk 335, Mrk 79, Mrk 279, Mrk 506, 3C 382, 3C 390.3, NGC 6814, Mrk 304, Ark 564, and NGC 7469 in order to facilitate the photometric monitoring of these objects; 36 of the stars have not been calibrated before. The comparison stars are situated in 5 × 5 arcmin fields centred on the Seyfert galaxies, their V band flux ranges from 11.7 to 18.2 mag with a median value of 16.3 mag, and their BV colour index ranges from 0.4 to 1.6 mag with a median value of 0.8 mag. The median errors of the calibrated UBVRCIC magnitudes are 0.08, 0.04, 0.03, 0.04, and 0.06 mag, respectively. Comparison stars were calibrated for the first time in three of the fields (Mrk 506, 3C 382, and Mrk 304). The comparison sequences in the other fields were improved in various aspects. Extra stars were calibrated in four fields (Mrk 335, Mrk 79, NGC 6814, and NGC 7469) – most of these stars are fainter and are situated closer to the Seyfert galaxies compared to the existing comparison stars. The passband coverage of the sequences in five fields (Mrk 335, Mrk 79, Mrk 279, NGC 6814, and Ark 564) was complemented with the U band. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Spectral monitoring of NGC 3516, NGC 4151, NGC 5548 and NGC 7469 has been carried out in 1986-1996 on time scales of days-months-years. In 1986-1995, the observations were made on the SAO 6-m telescope using a TV scanner with SNR about 20 in the range 4000-5200 Å (about 500 spectra). In 1996, virtually all spectra were obtained using a CCD camera with 2D and 3D spectrographs in the range 4000-7000 Å with SNR 50-100 (270 spectra). The Seyfert galaxies NGC 7469, NGC 5548, and 3C390.3 were observed in the international "AGN Watch" program by about 40 observatories around the world at optical wavelengths and by the IUE and HST in the UV. Our observations in this program demonstrated that there are no significant radial motions inside the broad line regions in NGC 4151, 3C390.3 and, possibly, in NGC 5548; that the BLR dimensions are about half those previously assumed; and that there is stratification of the BLR. The SAO 6-m observations suggest the existence of narrow satellites of the H lines during the low state of NGC 4151 in 1986-1987; new data on the narrow line region indicates the existence of an intermediate-velocity OIII component (about 2000 km/s).  相似文献   

3.
In the frame of the Starburst model, we show that the stellar processes expected to occur during the evolution of a metal rich massive stellar cluster can reproduce the observed optical light curves of the Seyfert 1 galaxies NGC 4151 and NGC 5548.  相似文献   

4.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

5.
Observations of three different sized regions centered on the optical jet spiral, NGC 1097 have been made with ROSAT. The PSPC observations show a striking excess of bright and medium flux X-ray sources around this hot spot nucleus, Seyfert 1 galaxy. The brightest of these sources are catalogued quasars which suggests the fainter X-ray sources are predominantly quasars also. If so, of the order of at least 10 and possibly considerably more X-ray quasars appear to be associated with NGC 1097 within a radius of 20. There is a marked segregation, with bright X-ray sources on the side of the bright optical jets and weak X-ray sources on the side of the fainter optical jets. Some, but not all, of this asymmetry could be accounted for by absorption in the plane of the spiral being tilted towards us on the weak source side. Both optical and X-ray evidence point to strong absorption in the disk of NGC 1097 which reaches far beyond the optical limits. High resolution imaging (HRI) of regions closer to NGC 1097 reveal some fainter pairs and lines of X-ray sources aligned across the nucleus near the cones defined by the optical jets. Filaments and patches of ultraviolet emission (1500–1700Å) appear to fill in the region between the strong optical jets in the direction of the bright X-ray quasars, suggesting physical association of the ultraviolet emission with the quasars and the galaxy. Finally, ROSAT SURVEY observations have been examined over a 4 × 4 degree field centered on NGC 1097. A line of X-ray sources going through the galaxy in the direction of the strongest optical jet includes a strong X-ray quasar with its X-ray isophotes extended toward NGC 1097. In approximately the opposite direction, 1.9 degrees distant, is a strong X-ray source (.5cts s-1) which is here identified with a 16.5 mag BL Lac object.  相似文献   

6.
We present the results of our multicolor UBV RI observations of NGC 7469, a type 1 Seyfert galaxy (SyG 1), in 2008–2014 at the Maidanak Observatory. Analysis of the long-term variability of NGC 7469 for two observing periods, 1990–2007 and 2008–2014, has shown the existence of yet another activity cycle of the slow component in 2009–2014 with an activity maximum in 2011–2012. We have studied the slow variability component in 2009–2014 and constructed the color–color (U ? B), (B ? V) diagrams for the variability maxima and minima of NGC 7469 in various apertures and for the blackbody gas radiation modeling the accretion disk radiation. It can be seen from the color–color diagram that the color of the nuclear part of NGC 7469 becomes bluer at maximum brightness, suggesting a higher temperature of the accretion disk. We have analyzed the X-ray variability of NGC 7469 in 2008 and 2009 in comparison with the activity minimum in 2003. The optical–X ray correlation coefficient in 2008 is close to 0.5. The weak correlation is explained by the influence of an SN 1a explosion in the circumnuclear part of NGC 7469, which manifests itself in the optical band but does not change the pattern of X-ray variability. Comparison of the variability data for 2009 shows an optical–X ray (U band–7–10 keV) correlation with a correlation coefficient of about 0.93. The correlation coefficient and the lag depend on the wavelength in the optical and X-ray bands. The lag between the X-ray and optical fluxes in 2009 is observed to a lesser extent in 2003.  相似文献   

7.
A time-independent model for the radial distributions of gas and magnetic field has been applied to the galaxies Milky Way, M31, NGC 7331, and NGC 2841, in order to explain the gaseous ring patterns in spiral galaxies, and to NGC 6946 to see if this model is valid for galaxies without a gaseous ring. The model takes the gas pressure as its input data and solves the MHD equations to calculate the magnetic field responsible for the gas distribution. This field has an azimuthal component only, and can be used to predict synchrotron radio emission. A discussion about the dependence of the synchrotron radiation profiles obtained upon the assumed relationN 0(,B) for the cosmic-ray density per unit energy as a function of gas density and field strength, is here considered in detail. It is shown that a relation of the typeN 0/B, which takes into account the loss of energy of the cosmic-relativistic electrons, yields good agreement with the observations.  相似文献   

8.
We have analyzed the optical (U BV) and ultraviolet (λ1000–2700 Å) observations of the nuclear variability of the Seyfert galaxy NGC 4151 in the period 1987–2001 (the second cycle of activity). The fast (tens of days) and slow (~10 years) components of the nuclear variability, F and S, respectively, are shown to be completely different, but thermal in nature. We associate the S component with the formation and evolution of an accretion disk and the F component (flares) with instabilities in the accretion disk and their propagation over the disk in the form of a shock wave. The S component is present not only in the optical, but also in the ultraviolet range, with its amplitude being comparable over the entire range λ1000–5500 Å under study. The amplitude of the average flare (the F component) doubles as the wavelength decreases from 5500 to 1000 Å, while the rise time of the brightness to its maximum Δt (the variability time scale) decreases from
to 6d ± 2d. The brightness decline (flare decay) time decreases by a factor of 16. The extinction in the ultraviolet is shown to have been grossly underestimated: beginning from the first IUE data, only the extinction in our Galaxy,
, has been taken into account. A proper allowance for the total extinction, i.e., for the extinction in the nucleus of NGC 4151 as well
leads to a large increase in the luminosity of the variable source in the nucleus of NGC 4151: L = (6–8) × 1046 erg s?1. The spectral energy distribution for the variable source (λ950–5500 Å) agrees well with two Planck distributions: Te = 65 000 (λmax = 450 Å) and 8000 K. The radiation with Te = 8000 K is the reprocessing of the bulk of the ultraviolet radiation by the accretion disk with a lag of 0.5–0.6 days in the V band. The lag in the U-B variability of the slow component revealed the existence of an extended broad line region (EBLR) at an effective distance of 1.5 lt-years, as confirmed by spectroscopic data obtained at the Crimean Astrophysical Observatory. This yields the following mass of the central object in NGC 4151: Mc = (1–3) × 109M. The luminosity of the variable source then accounts for 50–60% of LEdd rather than 1–2%, as has been thought previously. In general, the pattern of ultraviolet and optical variability in NGC 4151 agrees excellently with the theory of disk accretion instability for a supermassive black hole suggested by N. Shakura and R. Sunyaev 30 years ago: the energy release is at a maximumin the ultraviolet (in the case under consideration, at λ450 Å), the luminosity is ~1047 erg s?1 for Mc ~ 109M (several tens of percent of LEdd), and the variability time scale ranges from several days to many years.
  相似文献   

9.
A digital television complex, equipped with an original slitless spectrograph with transpaarent diffraction gratings, and operating on the 0.5-meter telescope of the Crimean Astrophysical Observatory, was used for spectrophotometric observations of the nuclei of Seyfert galaxies. The absolute energy distributions in the spectra of the nuclei of the Seyfert galaxies NGC 4501, NGC 7469, and NGC 1275 in the wavelength range 4000–7000 Å were obtained. Synthetic stellar magnitudes in the V band were calculated. The apparatus can be used to investigate the spectral variability of emission from the nuclei of Seyfert galaxies on a time scale of tens of minutes or more.Translated from Astrofizika, Vol. 39, No. 1, pp. 101–110, January–March, 1996.  相似文献   

10.
We discuss the infrared (IR) (1.25–5 µm) photometry of eight planetary nebulae performed in 1999–2006. For all of the nebulae under study, we have firmly established IR brightness and color variations on time scales shorter than one year and up to 6–8 years. The greatest IR brightness variations were observed in IC 2149, IC 4997, and NGC 7662. Their J magnitudes varied within 0 . m 2–0 . m 25. In the remaining objects, the J magnitude variations did not exceed 0 . m 15. All of the planetary nebulae under study exhibited IR color variations. Based on the IR photometry, we have classified the central regions of the planetary nebula NGC 1514 and of the northern part of NGC 7635 seen through a 12″ aperture as a B(3–7) main-sequence star (NGC 1514) and a ~O9.5 upper-main-sequence star (NGC 7635). The nebulae IC 4997 and NGC 7027 exhibited an excess emission (with respect to the emission from a hot source) at λ > 2.5 µm.  相似文献   

11.
Results of 11-year-long X-ray INTEGRAL observations of the nucleus of Seyfert galaxy NGC 4945 in the 3–500 keV range were processed. A two-component spectrum model, which includes strong radiation absorption in the Compton-thick torus around the AGN “central engine” and secondary radiation reflected from the torus walls, was used in the analysis. The following primary spectrum parameters were determined based on the data accumulated throughout the entire exposure period: photon index Γ = 1.60 ± 0.07, exponential cutoff energy E c =157 -22 +29 keV, and column density of the medium that absorbs primary radiation N H,1 =5.0 -0.9 +1.0 × 1024 cm–2. The column density of the medium absorbing reflected radiation is two orders of magnitude lower. Both the X-ray flux in the ranges of 20–40, 40–60, and 60–100 keV and the shape of the X-ray spectrum of NGC 4945 vary. The spectrum shape variations may be induced by inhomogeneities of the absorbing medium surrounding the AGN. At the same time, there is some evidence for moderate spectrum variations in the highenergy region, which may be associated with changes in the “central engine.”  相似文献   

12.
IUE has made very successful long term and intense short time-scale monitoring spectroscopic study of NGC 4151, a Seyfert 1 galaxy for over nearly 18 years from its launch in 1978 to 1996. The long-term observations have been useful in understanding the complex relation between UV continuum and emission line variability Seyfert galaxies. In this paper, we present the results of our studies on the short-timescale intense monitoring campaign of NGC 4151 undertaken during December 1–15, 1993. A most intense monitoring observation of NGC 4151 was carried out by IUE in 1993, when the source was at its historical high flux state with a shortest interval of 70 min between two successive observations. We present our results on emission line and continuum variability amplitudes characterized by \(F_{\mathrm{var}}\) method. We found highest variability of nearly 8.3% at 1325 \(\AA \) continuum with a smallest amplitude of 4% at 2725 \(\AA \). The relative variability amplitudes (\(R_\mathrm{max}\)) have been found to be 1.372, 1.319, 1.302 and 1.182 at 1325, 1475, 1655 and 2725 \(\AA \) continuum respectively. The continuum and emission line variability characteristics obtained in the present analysis are in very good agreement with the results obtained by Edelson et al. (1996) and Crenshaw et al. (1996) from the analysis of the same observational spectral data. The large amplitude rapid variability characteristics obtained in our study have been attributed to the continuum reprocessing of X-rays absorbed by the material in the accretion disk as proposed by Shakura and Sunyaev (1973). The continuum and emission light curves have shown four distinct high amplitude events of flux maxima during the intense monitoring campaign of 15 days, providing a good limit on the amplitude of UV variability and the BLR size in low luminosity Seyfert galaxies and are useful for constraining the continuum emission models. The decreasing \(F_{\mathrm{var}}\) amplitude of UV continuum with respect to increasing wavelength obtained in the present study and consistent with similar observations by Edelson et al. (1996) and Crenshaw et al. (1996) is a significant result of the intense monitoring observations.  相似文献   

13.
Numerous U and V magnitude measurements were performed for the nucleus of the Seyfert galaxy NGC 4151 at the Crimean Laboratory of the SAI (Moscow University) in 1994–2005. Adding them to the previous data for 1968–1997 has led to a substantial increase in the confidence level of the light variations in NGC 4151 with a stable period of P G = 160.0108(7) min and a mean amplitude of 0.007 U mag (in the “active” state of the nucleus). The period of NGC 4151 agrees well with the period of 160.0101(15) min found previously in the oscillations of the Sun. It is treated as the period of a “coherent cosmic oscillation” independent of redshift z or as the period of “free cosmic vibrations” of the hydrogen atom, the main element of the Universe. The period and initial phase of the P G oscillation have been constant for 38 years of NGC 4151 observations. The new astrophysical phenomenon appears to be closely related to the quantum nonlocality of photons and is of particular interest in physics and cosmology.  相似文献   

14.
We present narrow-band emission line (Hα + [N II]λλ 6548, 6583, [O III] λλ 4959, 5007)as well as green or red continuum images of selected Seyfert galaxies. The sample includes NGC 7214, IC 4218, Akn 479, Mrk 915, IC 1515 and F 348. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Analysis of recent observations of the elliptical galaxies NGC 4472 and NGC 4649 with the Chandra X-ray space telescope has revealed faint soft X-ray sources at their centers. The sources are located at the galactic centers, to within 1″, and are most likely associated with the radiation from the supermassive black holes that are assumed to be at the optical centers of these galaxies. Interest in these and several other similar objects stems from the unusually low luminosity of the supermassive black hole embedded in a dense interstellar medium. The sources have soft energy spectra in the Chandra energy range 0.2–10 keV. The source is detected at a 3σ confidence level only in the range 0.2–0.6 keV with a luminosity of ~6×1037 erg s?1 in NGC 4649 and in the range 0.2–2.5 keV with a luminosity of ~ 1.7×1038 erg ?1 in NGC 4472.  相似文献   

16.
We examine the XMM X-ray spectrum of the low-ionisation nuclear emission-line region (LINER)-AGN NGC 7213, which is best fit with a power law, Kα emission lines from Fe i, Fe xxv and Fe xxvi and a soft X-ray collisionally ionised thermal plasma with kT = 0.18+0.03−0.01 keV. We find a luminosity of 7× 10−4 LEdd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M 81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).  相似文献   

17.
Based on our UBV RI observations and X-ray data from the RXTE satellite, we have investigated the variability of the galaxy 3C 120 over the period 1996–2008. The relative variability amplitude in the U and B bands without any subtraction of the contribution from the underlying galaxy is 23 and 22%, respectively, against 21% in the X-ray band. The autocorrelation function based on the B-band data is considerably wider than that based on the X-ray data. The structure functions on a time scale from 1 to ~100–300 days in the X-ray and optical spectral ranges have the form of a power law (SFτ b ). However, their indices differ significantly: b = 0.42 in the X-ray band and b = 1.36 in the B band. Considering the X-ray and optical variabilities as a superposition of independent flares in a wide range of durations, we may conclude that the amplitudes of short flares in the X-ray band are higher than those in the optical one and, conversely, the relative amplitudes of long flares in the X-ray band are slightly lower than those in the optical one, i.e., short events dominate in the X-ray band. The optical flux variations in the R c and I c bands lag significantly behind those in the B band, by 3.9 ?0.7 +1.0 and 6.2 ?0.6 +1.1 days, respectively, if the lag is estimated from the centroid of the cross-correlation function. The X-ray variability on a time scale of about 1800 days (~5 yr) lags behind the B-band variations by 5.3 ?3.3 +2.7 days, but the confidence level of this estimate is only 87%. A more detailed analysis of the correlation between the X-ray and optical emissions has revealed a fairly complex picture: different degrees of correlation between the optical and X-ray fluxes are observed at different times.  相似文献   

18.
The analysis of all the available data between 1968 and 1991 on rapid variability of optical and X-ray luminosity of three AGNs, NGC 3516, NGC 4151 and 3C 273, shows the presence of small-amplitude (˜ 1 %) but statistically confident (≈︁ 5s̀) periodicity of 160.0105 (± 6) min. Within the error limits it coincides with the period P0 = 160.0101 (± 1) min of global oscillations of the Sun. An independence of the observed period on AGN red shift z favours the hypothesis about a cosmological origin of the 160min oscillation.  相似文献   

19.
We analyze the spectral variability for two narrow line Seyfert 1 galaxies, PG 1700+518 and NGC 4051 using the spectral decomposition method. We focus on their optical Fe ii variability to investigate the origin of Fe ii in AGNs. For PG 1700+518, we find that the Fe ii size is about 200 light-days, which is consistent with the Hβ size derived from the empirical R–L relation. For NGC 4051, the [O iii] 5007 Å flux is strongly correlated with continuum flux, suggesting that we should recalibrate the spectral flux on a scale defined by [O iii] flux. The corrected light curves of Fe ii, Hβ, He ii, f λ (5100 Å) are given here. A detailed analysis will be given in the near future.  相似文献   

20.
We present an analysis of the reported spectral features of NGC 4151 in X-rays. It is shown that the origin of X-rays from the source is inconsistent with a single production mechanism. We suggest a new two-component model in which soft X-rays arise from the black-body emission of a tiny hot nucleus withT2×107 K and the hard X-ray photons are generated in an extended region by inverse Compton scattering of electrons with the infrared photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号