首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inversion codes are the most useful tools to infer the physical properties of the solar atmosphere from the interpretation of Stokes profiles. In this paper, we present the details of a new Stokes Profile INversion code (SPIN) developed specifically to invert the spectro-polarimetric data of the Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory. The SPIN code has adopted Milne–Eddington approximations to solve the polarized radiative transfer equation (RTE) and for the purpose of fitting a modified Levenberg–Marquardt algorithm has been employed. We describe the details and utilization of the SPIN code to invert the spectro-polarimetric data. We also present the details of tests performed to validate the inversion code by comparing the results from the other widely used inversion codes (VFISV and SIR). The inverted results of the SPIN code after its application to Hinode/SP data have been compared with the inverted results from other inversion codes.  相似文献   

2.
The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne–Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 Å Fe i line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release are reported here.  相似文献   

3.
In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, eight candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs’ ejecta are characterized by a high speed and a wide angular span, and the CME–streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events.  相似文献   

4.
The Taiwan Oscillation Network (TON) is a ground-based network to measure solar intensity oscillations to study the internal structure of the Sun. K-line full-disk images of 1000 pixels diameter are taken at a rate of one image per minute. Such data would provide information onp-modes withl as high as 1000. The TON will consist of six identical telescope systems at proper longitudes around the world. Three telescope systems have been installed at Teide Observatory (Tenerife), Huairou Solar Observing Station (near Beijing), and Big Bear Solar Observatory (California). The telescopes at these three sites have been taking data simultaneously since October of 1994. Anl – v diagram derived from 512 images is included to show the quality of the data.  相似文献   

5.
A type of saturation is sometimes seen in sunspot umbrae in MDI/SOHO magnetograms. In this paper, we present the underlying cause of such saturation. By using a set of MDI circular polarization filtergrams taken during an MDI line profile campaign observation, we derive the MDI magnetograms using two different approaches: the on-board data processing and the ground data processing, respectively. The algorithms for processing the data are the same, but the former is limited by a 15-bit lookup table. Saturation is clearly seen in the magnetogram from the on-board processing simulation, which is comparable to an observed MDI magnetogram taken one and a half hours before the campaign data. We analyze the saturated pixels and examine the on-board numerical calculation method. We conclude that very low intensity in sunspot umbrae leads to a very low depth of the spectral line that becomes problematic when limited to the 15-bit on-board numerical treatment. This 15-bit on-board treatment of the values is the reason for the saturation seen in sunspot umbrae in the MDI magnetogram. Although it is possible for a different type of saturation to occur when the combination of a strong magnetic field and high velocity moves the spectral line out of the effective sampling range, this saturation is not observed.  相似文献   

6.
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.  相似文献   

7.
Low-degreep-modes penetrate to the solar centre and provide direct information about the core. However, the high observational accuracy that is required to resolve the details of the structure of the core is difficult to achieve because the oscillation power spectrum is significantly distorted by stochastic forcing of the oscillations, which appears as multiplicative noise. Here, an attempt is reported to reduce uncertainties of spectral parameter estimation by incorporating constraints imposed by smooth behaviour of some of the parameters (e.g., linewidths, background noise, rotational splitting) over a group of lines. Instead of estimating these parameters independently for each line, we determine them as smooth functions of frequency. It is expected that this procedure gives more accurate estimates of the average frequencies of any multiplet in the power spectrum, to which we have applied no constraints. We give some examples of the procedure for whole-disk measurements by the IPHIR space experiment. It is shown that the additional constraints do not result in significant changes in the frequency estimates, except for one mode whose peak in the power spectrum has the lowest signal-to-noise ratio. However, the uncertainty in the frequency of that mode does not influence substantially the results of the structure inversion in the core. Inversions of the IPHIR datasets are compared with corresponding inversions of data from the Birmingham Solar Oscillation Network (BISON). The IPHIR data indicate a sharp increase towards the centre of the deviation of the squared sound speed of the sun from that of a standard solar model, whereas the BISON data show a decrease. The difference between the IPHIR and BISON inversions is significant, preventing any definite conclusion about the deviation of the structure of the solar core from that of the model.  相似文献   

8.
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180° azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne–Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.  相似文献   

9.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

11.
Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010?–?2017 were used to continue our previous analyses reported by Didkovsky and Gurman (Solar Phys.289, 153, 2014a) and Didkovsky, Wieman, and Korogodina (Solar Phys.292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two “standard” solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a “typical” trend of instrumental degradation or a long-term activity profile from the He?ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.  相似文献   

12.
Measurements and the interpretation of the time delay effect between long quasi-periodic oscillations of sunspot magnetic fields and nearby millimeter radio sources observed at 37 GHz were the main goals of this work. Ground-based radio telescope operated by Metsähovi Radio Observatory, Aalto University, Finland was used to obtain time series variations of radio intensity at 37 GHz frequency, as well as, the Helioseismic and Magnetic Imager instrument on-board the Solar Dynamics Observatory spacecraft was used to obtain the magnetic field time series variations. Lags (time delays) in the interval of 15–35 minutes were obtained by cross-correlation analysis of time series and by direct geometrical measurements of distances between the radio sources and nearby sunspots. These distances were in the interval of 11–24 Mm. Corresponding time delays were defined as the relation of these distances to the sound speed. Time delays obtained by two different independent methods turned to be very close. This fact confirms the interpretation of the phenomenon under the study as a process of propagation of disturbances from the slowly oscillating sunspot to the radio source with the sound speed.  相似文献   

13.
The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth–Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the Solar Lense–Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation.  相似文献   

14.
In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A?completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).  相似文献   

15.

The radio frequency emission at 10.7 cm (or 2800 MHz) wavelength (considered as solar flux density) out of different possible wavelengths is usually selected to identify periodicities because of its high correlation with solar extreme ultraviolet radiation as well as its complete and long observational record other than sunspot related indices. The solar radio flux at 10.7 cm wavelength plays a very valuable role for forecasting the space weather because it is originated from lower corona and chromospheres region of the Sun. Also, solar radio flux is a magnificent indicator of major solar activity. Here in the present work the solar radio flux data from 1965 to 2014 observed at the Domimion Radio Astrophysical Observatory in Penticton, British Columbiahas been processed using Date Compensated Discrete Fourier Transform (DCDFT) to identify predominant periods within the data along with their confidence levels. Also, the multi-taper method (MTM) for periodicity analysis is used to validate the observed periods. Present investigation exhibits multiperiodicity of the time series F10.7 solar radio flux data around 27, 57, 78, 127, 157, 4096 days etc. The observed periods are also compared with the periods of MgII Index data using same algorithm as MgII Index data has 99.9% correlation with F10.7 Solar Radio Flux data. It can be observed that the MgII index data exhibits similar periodicities with very high confidence levels.Present investigation also clearly indicates that the computed results are very much confining with the results obtained in different communication for the similar data of 10.7 cm Solar Radio Flux as well as for the other solar activities.

  相似文献   

16.
We consider the problem of automatically (and robustly) isolating and extracting information about waves and oscillations observed in EUV image sequences of the solar corona with a view to near real-time application to data from the Atmospheric Imaging Array (AIA) on the Solar Dynamics Observatory (SDO). We find that a simple coherence/travel-time based approach detects and provides a wealth of information on transverse and longitudinal wave phenomena in the test sequences provided by the Transition Region and Coronal Explorer (TRACE). The results of the search are pruned (based on diagnostic errors) to minimize false-detections such that the remainder provides robust measurements of waves in the solar corona, with the calculated propagation speed allowing automated distinction between various wave modes. In this paper we discuss the technique, present results on the TRACE test sequences, and describe how our method can be used to automatically process the enormous flow of data (≈1 Tb day−1) that will be provided by SDO/AIA. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

17.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

18.
Lemaire  P.  Wilhelm  K.  Curdt  W.  SchÜle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Vial  J. C.  KÜhne  M.  Huber  M. C. E.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M. 《Solar physics》1997,170(1):105-122
SUMER – Solar Ultraviolet Measurements of Emitted Radiation – is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system.  相似文献   

19.
We estimate the Solar system motion relative to the cosmic microwave background using Type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the Solar system at about the 3.5σ level. However, when the correlations are correctly accounted for, the SNe data only detect the Solar system peculiar velocity at about the 2.5σ level. We forecast that the Solar system peculiar velocity will be detected at the 9σ level by GAIA and the 11σ level by the Large Synoptic Survey Telescope. For these surveys, we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important.  相似文献   

20.
In the context of current and future microwave surveys mainly dedicated to the accurate mapping of Cosmic Microwave Background (CMB), mm and sub-mm emissions from Solar System will represent a potential source of contamination as well as an opportunity for new Solar System studies. In particular, the forthcoming ESA Planck mission will be able to observe the point-like thermal emission from planets and some large asteroids as well as the diffused Zodiacal Light Emission (ZLE). After a brief introduction to the field, we focus on the identification of Solar System discrete objects in the Planck time ordered data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号