首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mechanisms of the meridional heat transport in the Southern Ocean   总被引:1,自引:0,他引:1  
The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, θ. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and θ (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT.  相似文献   

2.
Formation of subantarctic mode water in the southeastern Indian Ocean   总被引:1,自引:1,他引:1  
Subantarctic Mode Water (SAMW) is the name given to the relatively deep surface mixed layers found directly north of the Subantarctic Front in the Southern Ocean, and their extension into the thermocline as weakly stratified or low potential vorticity water masses. The objective of this study is to begin an investigation into the mechanisms controlling SAMW formation, through a heat budget calculation. ARGO profiling floats provide estimates of temperature and salinity typically in the upper 2,000 m and the horizontal velocity at various parking depths. These data are used to estimate terms in the mode water heat budget; in addition, mode water circulation is determined with ARGO data and earlier ALACE float data, and climatological hydrography. We find a rapid transition to thicker layers in the central South Indian Ocean, at about 70°S, associated with a reversal of the horizontal eddy heat diffusion in the surface layer and the meridional expansion of the ACC as it rounds the Kerguelen Plateau. These effects are ultimately related to the bathymetry of the region, leading to the seat of formation in the region southwest of Australia. Upstream of this region, the dominant terms in the heat budget are the air–sea flux, eddy diffusion, and Ekman heat transport, all having approximately equal importance. Within the formation area, the Ekman contribution dominates and leads to a downstream evolution of mode water properties.  相似文献   

3.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   

4.
The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model’s rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).  相似文献   

5.
《Marine pollution bulletin》2011,62(7-12):432-448
An outstanding characteristic of New Caledonia upwelling is that most events appear limited to the southern half of the western barrier reef. This north–south difference cannot be explained by alongshore variability of the projected wind stress and no strong evidence for alternative explanations has been proposed. A major objective of this paper is to provide the first dynamical analysis of New Caledonia upwelling and its regional environment, based on numerical simulations. Coastal upwelling around New Caledonia is shown to be modulated by a system of geostrophic currents interacting with the island mass. Upwelling velocities are weaker than expected from the two-dimensional Ekman theory, as Ekman divergence is balanced by “coastal geostrophic convergence”. The cooling effect of upwelling is also attenuated by alongshore transport of warm water by the Alis current, reminiscent of the Leeuwin current off Western Australia. Nevertheless, coastal upwelling can locally modify the large-scale surface water heat budget, dominated by meridional advection warming and surface cooling. The upwelled waters appear to be mostly of western origin and are transported below the surface by the Subtropical Counter Current before upwelling off New Caledonia. This appears in sharp contrast with the eastern barrier reef where the general warming by meridional advection of tropical surface waters is accentuated by the vigorous western boundary type Vauban current.  相似文献   

6.
The sources and pathways of mode waters and lower thermocline waters entering the subtropical gyre of the Indian Ocean are examined. A Lagrangian analysis is performed on an eddy-admitting simulation of the Global Ocean performed by the DRAKKAR Group (NEMO/OPA), which captures the main observed features. We trace the subducted mode water’s pathways, identify their formation regions and trace whether their source waters come from the Atlantic, Pacific or Indian sectors of the Southern Ocean. Three main sites for mode waters ventilation in the Indian sector are identified with different circulation pathways and source water masses: (a) just north of Kerguelen, where 4.2 Sv of lighter Subantarctic Mode Waters (SAMW); σ 0 ∼ 26.5) are exported—originating in the Atlantic and Agulhas Retroflection regions; (b) SW of Australia, where 6.5 Sv of medium SAMW (σ 0 ∼ 26.6) are ventilated—originating in the southern and denser Agulhas Retroflection region; (c) SW of Tasmania and along the South Australian coast, where 3 Sv of denser SAMW (σ 0 ∼ 26.75) are ventilated—originating from three sources: Leeuwin Current waters, Tasman Sea (Pacific) waters and Antarctic Surface Waters. In all cases, modelled mode waters were last ventilated in the Indian Ocean just north of the deepest winter-mixed layers. For the waters subducted SW of Australia, the last ventilation site extends even further north. Waters ventilated in the deepest mixed layers north of the Subantarctic Front are then re-ventilated 5 years later southwest of Australia. The model results raise new hypotheses that revisit the classical picture of the SAMW formation and transformation, where a large homogeneous mixed layer is subducted and ‘slides’ equatorward, essentially maintaining the T/S characteristics acquired at the surface. Firstly, the last ventilation of the modelled mode waters is not in the region of the deepest mixed layers, as previously thought, but further north in regions of moderate meso-scale eddy activity. Secondly, the model shows for the first time a significant source region for Indian Ocean mode waters coming from deep winter-mixed layers along the south Australian coast. Finally, this analysis shows how the mode water characteristics are modified after subduction, due to internal eddy mixing. The simulation shows that resolved eddies have a strong impact on the mixed layer properties and that isopycnal eddy mixing also contributes to the generation of more homogeneous mode water characteristics in the interior.  相似文献   

7.
We present a unified model of the air–sea boundary layer, which takes account of the air–sea momentum exchange across the sea surface. The recognition of the importance of the velocity shears in the water (which comprise a frictional shear and the Stokes shear due to the wave motion) in determining the sea surface roughness is a distinctive feature of the analysis, which leads to a prediction of the Charnock constant (α) in terms of two independent parameters, namely the wave age and the ratio of the Stokes shear to the Eulerian shear in the water. This expression is used to interpret the large observational variability of the Charnock constant. The 10-m drag coefficient can also be expressed using similar reasoning, and the introduction of a relation in which the ratio of the frictional shear in the water to the frictional shear in the air decreases with the friction velocity yields predictive relations for the variation of the 10-m drag coefficient at very high wind speeds both in the open ocean and in wind–wave tanks. The physical interpretation of this relation is that the production of spray essentially returns momentum from the ocean to the atmosphere, and this process becomes progressively more important as the wind speed increases.  相似文献   

8.
Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ~2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.  相似文献   

9.
The Loop Current mediating the oceanic heat and salt flux from the Caribbean Sea into the Atlantic Ocean and its interference with the Mississippi River discharge are critical for both the regional climate in the Gulf of Mexico area and the water vapor transport towards high northern latitudes. We present a 400-kyr record of sea surface temperature and local surface salinity from the northeastern Gulf of Mexico (IMAGES core MD02-2575) approximated from combined planktonic foraminiferal δ18O and Mg/Ca, which reflects the temporal dynamics of the Loop Current and its relationship to both varying Mississippi discharge and evolution of the Western Hemisphere Warm pool. The reconstructed sea surface temperature and salinity reveal glacial/interglacial amplitudes that are significantly larger than in the Western Hemisphere Warm pool. Sea surface freshening is observed during the extreme cool periods of Marine Isotope Stages 2, 8, and 10, caused by the strengthened Mississippi discharge which spread widely across the Gulf favored by the less established Loop Current. Interglacial and interstadial sea-surface conditions, instead, point to a strengthened, northward flowing Loop Current in line with the northward position of the Intertropical Convergence Zone, allowing northeastern Gulf of Mexico surface hydrographic conditions to approach those of the Caribbean. At these times, the Mississippi discharge was low and deflected westward, promoted by the extended Loop Current. Previously described deglacial megadischarge events further to the west did not affect the northeastern Gulf of Mexico hydrography, implying that meltwater routing from the Laurentide Ice Sheet via the Mississippi River is unlikely to have affected Atlantic Meridional Overturning Circulation.  相似文献   

10.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   

11.
The seismically active Skagerrak region in the border area between Denmark and Norway has traditionally been associated with uncertain earthquake locations due to the limited station coverage in the region. A new seismic station in southern Norway and a recent update of the earthquake database of the Danish National Network have led to a much more complete and homogeneous data coverage of the Skagerrak area, giving the possibility of improved earthquake locations in the region. In this study, we relocate earthquakes in the Skagerrak area to obtain a more exact picture of the seismicity and investigate well-recorded events to determine the depth distribution. Hypocenter depths are found to be generally in the range 11–25 km. Furthermore, new composite focal mechanisms are determined for clusters of events with similar waveforms. Results indicate that the Skagerrak seismicity is associated with shallow, crustal faults oriented in the NS direction south of the Sorgenfrei–Tornquist Zone (STZ) as well as with the STZ itself. Mainly reverse faulting mechanisms along NE–SW oriented faults indicate maximum horizontal compression in the NW–SE direction. This is in agreement with World Stress Map generalizations, most likely associated with ridge push forces from the mid-Atlantic ridge, though modified probably by local crustal weaknesses.  相似文献   

12.
We examine the seasonal mixed-layer temperature (MLT) and salinity (MLS) budgets in the Banda–Arafura Seas region (120–138° E, 8–3° S) using an ECCO ocean-state estimation product. MLT in these seas is relatively high during November–May (austral spring through fall) and relatively low during June–September (austral winter and the period associated with the Asian summer monsoon). Surface heat flux makes the largest contribution to the seasonal MLT tendency, with significant reinforcement by subsurface processes, especially turbulent vertical mixing. Temperature declines (the MLT tendency is negative) in May–August when seasonal insolation is smallest and local winds are strong due to the southeast monsoon, which causes surface heat loss and cooling by vertical processes. In particular, Ekman suction induced by local wind stress curl raises the thermocline in the Arafura Sea, bringing cooler subsurface water closer to the base of the mixed layer where it is subsequently incorporated into the mixed layer through turbulent vertical mixing; this has a cooling effect. The MLT budget also has a small, but non-negligible, semi-annual component since insolation increases and winds weaken during the spring and fall monsoon transitions near the equator. This causes warming via solar heating, reduced surface heat loss, and weakened turbulent mixing compared to austral winter and, to a lesser extent, compared to austral summer. Seasonal MLS is dominated by ocean processes rather than by local freshwater flux. The contributions by horizontal advection and subsurface processes have comparable magnitudes. The results suggest that ocean dynamics play a significant part in determining both seasonal MLT and MLS in the region, such that coupled model studies of the region should use a full ocean model rather than a slab ocean mixed-layer model.  相似文献   

13.
本文首先指出北太平洋副热带中部模态水(简称中部模态水)的形成具有显著的“局地”特征,其形成海区在(165°E~160°W,38°N~42°N)区间. 海气通量分析表明单纯的外部大气强迫场(太阳短波辐射、净热通量和风应力旋度)不能解释中部模态水形成海区的“局地”性;进一步对上层海洋层结季节变化特征的分析发现秋季(9~10月)在北太平洋中部上层海洋(<75 m)(165°E~160°W,38°N~42°N)区间存在特殊的浮力频率低值区——层结稳定性“豁口”. 该层结稳定性“豁口”作为“预条件(Precondition Mechanism)”机制对中部模态水形成的“局地”特征给出了合理的解释. 在上述研究的基础上,基于一个上层海洋混合层热平衡方程,通过诊断分析揭示该层结稳定性“豁口”是由海表热力强迫、垂向挟卷、Ekman平流和地转平流效应共同导致的,“豁口”东、西边界的确定直接或间接地取决于海表热力强迫、Ekman冷平流和地转暖平流的纬向分布差异.  相似文献   

14.
The subduction and export of subantarctic mode water (SAMW) as part of the overturning circulation play an important role in global heat, freshwater, carbon and nutrient budgets. Here, the spatial distribution and export of SAMW is investigated using Argo profiles and a climatology. SAMW is identified by a dynamical tracer: a minimum in potential vorticity. We have found that SAMW consists of several modes with distinct properties in each oceanic basin. This conflicts with the previous view of SAMW as a continuous water mass that gradually cools and freshens to the east. The circulation paths of SAMW were determined using (modified) Montgomery streamlines on the density surfaces corresponding with potential vorticity minima. The distribution of the potential vorticity minima revealed “hotspots” where the different SAMW modes subduct north of the Subantarctic Front. The subducted SAMWs follow narrow export pathways into the subtropical gyres influenced by topography. The export of warmer, saltier modes in these “hotspots” contributes to the circumpolar evolution of mode water properties toward cooler, fresher and denser modes in the east.  相似文献   

15.
Jon Albretsen 《Ocean Dynamics》2007,57(4-5):287-304
We perform eddy-permitting to eddy-resolving simulations of the Skagerrak/northern North Sea with a terrain-following numerical ocean model. We demonstrate that realistic representations of freshwater input are not required when the focus is on modelling mesoscale structures such as meanders and eddies. To arrive at this conclusion, we analyze the results using a recently developed energy diagnostic scheme to study the sensitivity to realistic representations of the lateral freshwater flux provided to the area from the Baltic Sea and by the major rivers. The scheme is suitable for analysis of growth of instabilities, and it has four basic instability processes prominent. We recognize both horizontal and vertical shear instabilities. There are two processes where average potential energy is converted to eddy kinetic energy, and they are related to the mean gradient in surface elevation and the mean lateral density gradient, respectively. The latter process is known as frontal instability. We demonstrate that the change in the eddy kinetic energy field is small, despite the large variations in the hydrographic properties from experiment to experiment. Moreover, generation of eddy activity appears at the same locations and with approximately the same strength regardless of actual representations of freshwater input. Furthermore, we find that vertical shear instability dominates the energy conversion processes in the Norwegian Coastal Current. Finally, we find that the areas off the northwest coast of Denmark recognized with enhanced eddy kinetic energy level is not caused by instability processes but eddy–eddy interaction rooted in variations in the sea level.  相似文献   

16.
The daily surface heat budget of a polynya in the coastal waters off Queen Maud Land, Antarctica is studied for the period from 23 December 1986 to February 1987 using the surface meteorological data collected on board the Swedish vessel M.S. Thuleland.The incoming solar radiation was found to be the most important component in the surface heat budget; its mean value for the study period was found to be about 209 W m−2. The latent and sensible heat fluxes were found in opposition and nearly balancing each other out. The average net heat gain over the polynya, for the study period, was 141 W m−2. From the mean heat storage values obtained from the temperature profiles, the heat gain at the surface is seen to be almost lost through advection and other interior physical processes in the top 50 m layer of the water column. This is reflected in sea surface temperature which was almost steady during the study period.  相似文献   

17.
In the region southeast of Okinawa, during May to July 2001, a cyclonic and an anticyclonic eddy were observed from combined measurements of hydrocasts, an upward-looking moored acoustic Doppler current profiler (MADCP), pressure-recording inverted echo sounders (PIESs), satellite altimetry, and a coastal tide gauge. The hydrographic data showed that the lowest/highest temperature (T) and salinity (S) anomalies from a 13-year mean for the same season were respectively -3.0/ 2.5℃ and -0.20/ 0.15 psu at 380/500 dbar for the cyclonic/anticyclonic eddies. From the PIES data, using a gravest empirical mode method, we estimated time-varying surface dynamic height (D) anomaly referred to 2000 dbar changing from -20 to 30 cm, and time-varying T and S anomalies at 500 dbar ranging through about ±2 ℃ and ±0.2 psu, respectively. The passage of the eddies caused variations of both satellite-measured sea surface height anomaly (SSHA) and tide-gauge-measured sea level anomaly to change from about –20 to 30 cm, consistent with the D anomaly from the PIESs. Bottom pressure sensors measured no variation related to these eddy activities, which indicated that the two eddies were dominated by baro-clinicity. Time series of SSHA map confirmed that the two eddies, originating from the North Pacific Subtropical Countercurrent region near 20°―30°N and 150°―160°E, traveled about 3000 km for about 18 months with mean westward propagation speed of about 6 cm/s, before arriving at the region southeast of Okinawa Island.  相似文献   

18.
Temperature and salinity data for the years 1939–1983 are used to investigate seasonal and interannual scales of the hydrographic variability across the Guaymas Basin, which is located between 27° and 28°N in the Central Gulf of California. Winter conditions extend from December to April and summer conditions from June to October, with transition periods in May and November. Sea surface temperature increases from about 16°C in February–March to 31°C in August. No clear seasonal cycle in surface salinity was found. Typical values are above 35.1‰ even in winter, and up to 35.5‰ in November.Relatively cold and low salinity near-surface waters observed in June 1957 and in June 1982, suggest advection of California Current Water to the Guaymas Basin. Subtropical Subsurface Water may occur around the year, but is obscured by vertical mixing with Gulf Water mainly during winter, when vertical stratification is weaker. The Intermediate and Deep Pacific Water masses successively fill the Guaymas Basin to the bottom (2000 m), showing very stable T-S characteristics.Positive sea level anomalies at Guaymas increases during El Nin˜o years, and anomalous low salinity and high temperature at the surface indicate the presence in the Guaymas Basin of water from the south. Observed differences reached 0.4‰ in surface salinity and 3°–5°C in surface temperature. There is evidence that the observed low salinities could not be due to abundant precipitation. An additional effect is a deepening of the winter pycnocline down about 200 m, compared to the usual depth of <100 m. In summer, this effect is not as clear as in winter, due to the strong stratification. The effects of the very strong 1982–1983 and 1957–1958 ENSO episodes may have lasted for one and two years, respectively. It is argued that during an ENSO event the Transition Water of the California Current meet and mix near the Gulf entrance with the Tropical Surface Water of the Costa Rica Coastal Current. This mixed water could have been carried north into the Gulf by local surface circulation. In 1983 it was found at the surface in the Guaymas Basin above the southeastward flow of the colder and saltier Gulf Water.  相似文献   

19.
A mean climatology is studied to examine atmospheric circulation characteristics to assess the wintertime (December, January, February and March - DJFM) synoptic weather system affecting northern India. The main objective is to study the mean circulation and mean energetics distribution pertaining to the winter season, which are embedded with an eastward moving synoptic weather system in westerlies, called Western Disturbances (WDs). Forty years (1958–1997) of uninitialized daily re-analysis data of the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP- NCAR, henceafter NCEP), U.S. has been considered for this study. Winter circulations are considered over the domain 15°S–45°N and 30°E–120°E. This domain is considered particularly to illustrate the impact of wintertime synoptic weather system Western Disturbances (WDs), which travel towards the east over the western Himalayas during winter and yield an enormous amount of precipitation in the form of snow. Large-scale balances of kinetic energy, vorticity, angular momentum, heat and moisture budget terms are analyzed. The main findings of the study show that strong rising motion in the extratropical region brings a significant amount of precipitation over the region of study. Also, horizontal flux of kinetic energy converges in the tropical region and diverges over the extratropical region. It is seen that both the zonal and meridional component of kinetic energy contributes to the production of kinetic energy in the upper troposphere. Vorticity budget shows that wintertime circulation over the western Himalayas is characterized by a negative generation of vorticity. The relative and planetary vorticity advection contributes to the horizontal transport of vorticity. The moisture flux transported into the region shows that in the middle tropospheric levels moisture undergoes phase transformation due to turbulent exchange and hence releases latent heat.  相似文献   

20.
Long-term variability of heat content (HC) in the upper 1,000 m of the Arctic Ocean is investigated using surface and subsurface temperature and current data during 1958–2005 compiled by Simple Ocean Data Assimilation. Annual cycle of the Arctic Ocean HC is controlled primarily by the negative and positive excursions in net upper ocean heat flux, while the inter-annual variability is mainly associated with meridional thermal advection from the North Atlantic Ocean. Variability in HC is experienced as a basin-wide cooling/warming in association with the Arctic Oscillation on a decadal time scale. In the first three dominant modes of Empirical Orthogonal Function, the maximum amplitude of HC variability occurs in the Greenland–Norwegian Sea and Eurasian Basin. In general, HC showed increasing trend during 1958–2005 indicating continuous warming with regional variations in magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号