首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Approximate PP plane wave displacement coefficients of reflection and transmission for weak contrast interfaces separating weakly but arbitrarily anisotropic elastic media are presented. The PP reflection coefficient for such an interface has been derived recently by Vavry?uk and P?en?ík (1997). The PP transmission coefficient presented in this paper was derived by the same approach. The coefficients are given as a sum of the coefficient for the weak contrast interface separating two nearby isotropic media and a term depending linearly on contrasts of the so-called weak anisotropy (WA) parameters (parameters specifying deviation of properties of the medium from isotropy), across the interface. While the reflection coefficient depends only on 8 of the complete set of the WA parameters describing P-wave phase velocity in weakly anisotropic media, the transmission coefficient depends on their complete set. The PP reflection coefficient depends on "shear-wave splitting parameter" γ. Tests of accuracy of the approximate formulae are presented on several models.  相似文献   

2.
Backus and Crampin derived analytical equations for estimating approximate phase-velocity variations in symmetry planes in weakly anisotropic media, where the coefficients of the equations are linear combinations of the elastic constants. We examine the application of similar equations to group-velocity variations in off-symmetry planes, where the coefficients of the equations are derived numerically. We estimate the accuracy of these equations over a range of anisotropic materials with transverse isotropy with both vertical and horizontal symmetry axes, and with combinations of transverse isotropy yielding orthorhombic symmetry. These modified equations are good approximations for up to 17% shear-wave anisotropy for propagations in symmetry planes for all waves in all symmetry systems examined, but are valid only for lower shear-wave anisotropy (up to 11%) in off-symmetry planes. We also obtain analytical moveout equations for the reflection of qP-, qSH-, and qSV- waves from a single interface for off-symmetry planes in anisotropic symmetry. The moveout equation consists of two terms: a hyperbolic moveout and a residual moveout, where the residual moveout is proportional to the degree of anisotropy and the spread length of the acquisition geometry. Numerical moveout curves are computed for a range of anisotropic materials to verify the analytical moveout equations.  相似文献   

3.
地球物理勘探中,地下应力的估测是非常重要的.本文利用应力诱导的弱各向异性的各向异性参数,借助已有的具有水平对称轴横向各向同性介质顾及高阶小量的横波反射系数近似公式,针对下介质为各向同性受单轴应力作用情况随应力的增加求取应力精度降低的问题,从横波反射系数近似公式的推导出发,联合SH波与SV波反射系数给出新的改进的单轴应力与横波反射系数的直观表达式;计算并对比了受单轴应力作用的各向同性介质的横波近似和严格的反射系数,并利用理论得到的横波反射系数对应力进行了估值.结果表明,利用改进后横波反射系数与应力的直观表达式,当应力增加时,应力估值精度有了明显的改善,这为利用横波反射数据直观估测应力提供理论依据.  相似文献   

4.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

5.
气煤弹性各向异性系数实验测试   总被引:10,自引:4,他引:6       下载免费PDF全文
气煤裂隙丰富,具有弹性各向异性,确定气煤弹性各向异性类型与大小,对煤田各向异性研究具有重要意义. 本文在对气煤煤样孔隙率测试的基础上,测量了顺煤层面、垂直于煤层面、与煤层面成45°三个方向上纵波速度(VP)和横波速度(VSH、VSV),计算弹性常数. 对于具有垂向对称轴横向各向同性模型,各向异性系数平均值|ε|≤0.2、|δ|≤0.2和|γ|≤0.2,表明气煤是弱各向异性介质;对于横向对称轴横向各向异性模型,各向异性系数平均值ε(V)≈δ(V),按照Thomsen观点气煤各向异性是由椭圆裂隙引起弹性各向异性.本文还讨论了各向异性系数与孔隙率的关系,表明各向异性的大小与孔隙率之间有一定的关系. 因此当煤层厚度与其顶底板岩性不变或变化很小,可以认为气煤各向异性主要由裂隙引起的,气煤各向异性大小和方向能够反映煤的裂缝密度和方位.  相似文献   

6.
The azimuth moveout (AMO) operator in homogeneous transversely isotropic media with a vertical symmetry axis (VTI), as in isotropic media, has an overall skewed saddle shape. However, the AMO operator in anisotropic media is complicated; it includes, among other things, triplications at low angles. Even in weaker anisotropies, with the anisotropy parameter η= 0.1 (10% anisotropy), the AMO operator is considerably different from the isotropic operator, although free of triplications. The structure of the operator in VTI media (positive η) is stretched (has a wider aperture) compared with operators in isotropic media, with the amount of stretch being dependent on the strength of anisotropy. If the medium is both vertically inhomogeneous, i.e. the vertical velocity is a function of depth (v(z)), and anisotropic, which is a common combination in practical problems, the shape of the operator again differs from that for isotropic media. However, the difference in the AMO operator between the homogeneous and the v(z) cases, even for anisotropic media, is small. Stated simply, anisotropy influences the shape and aperture of the AMO operator far more than vertical inhomogeneity does.  相似文献   

7.
A single set of vertically aligned cracks embedded in a purely isotropic background may be considered as a long-wavelength effective transversely isotropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly anisotropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Markov chain Monte Carlo inversion method of PP- and PS-wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inversion scheme taking only the PP-wave into account.  相似文献   

8.
Results from walkaway VSP and shale laboratory experiments show that shale anisotropy can be significantly anelliptic. Heterogeneity and anellipticity both lead to non-hyperbolic moveout curves and the resulting ambiguity in velocity analysis is investigated for the case of a factorizable anisotropic medium with a linear dependence of velocity on depth. More information can be obtained if there are several reflectors. The method of Dellinger et al. for anisotropic velocity analysis in layered transversely isotropic media is examined and is shown to be restricted to media having relatively small anellipticity. A new scheme, based on an expansion of the inverse-squared group velocity in spherical harmonics, is presented. This scheme can be used for larger anellipticity, and is applicable for horizontal layers having monoclinic symmetry with the symmetry plane parallel to the layers. The method is applied to invert the results of anisotropic ray tracing on a model Sand/shale sequence. For transversely isotropic media with small anisotropy, the scheme reduces to the method of Byun et al. and Byun and Corrigan. The expansion in spherical harmonics allows the P-phase slowness surface of each layer to be determined in analytic form from the layer parameters obtained by inversion without the need to assume that the anisotropy is weak.  相似文献   

9.
10.
VTI介质P波非双曲时差分析   总被引:5,自引:3,他引:5       下载免费PDF全文
具有垂直对称轴的横向各向同性介质模型(VTI)是目前各向异性理论研究和多波多分量地震资料叠前成像处理中最常用的一种各向异性模型.VTI介质中反射 P波时距曲线一般不再是双曲线.基于不同的相速度近似公式会得到不同的时距关系式.文中对几种典型的非双曲时距曲线与射线追踪得到的准确时距曲线在不同各向异性强度下进行了对比,结果表明Muir等和Stovas等提出的非双曲时距公式由于过高地考虑了横波垂直速度的影响与精确的时距曲线有很大偏差;Tsvankin等提出的弱各向异性非双曲时距公式在ε-δ<0时误差增大;Alkhalifah等提出的非双曲时距公式在大炮检距任意各向异性强度下都具有较高的精度,适于在实际资料处理中应用.  相似文献   

11.
Perturbation methods are common tools for describing wave propagation in weakly anisotropic media. The anisotropic medium is replaced by an average isotropic medium where wave propagation can be treated analytically and the correction for the effect of anisotropy is computed by perturbation techniques. This works well for anisotropies of up to 10%. Some materials (e.g. shales), however, can exhibit a much stronger anisotropy. In this case a background is required which still can be treated analytically but is applicable to stronger P-wave anisotropy. We present an averaging technique to compute a best-fitting ellipsoidal medium to an arbitrary anisotropic medium. Ellipsoidal media are sufficiently simple for analytical expressions to be available for many applications and allow consideration of strong P-wave anisotropy. The averaging of the arbitrary anisotropic medium can be carried out globally (i.e. for the whole sphere) or sectorially (e.g. for seismic waves propagating predominantly in the vertical direction). We derive linear relationships for the coefficients of the ellipsoid which depend on the elastic coefficients of the anisotropic medium. We also provide specifications for best-fitting elliptical and best-fitting isotropic media. Numerical examples for different rocks demonstrate the improved approximation of the anisotropic model obtained using the formulae derived, compared with the conventionally used average isotropic medium.  相似文献   

12.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data.  相似文献   

13.
Propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane, is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a half-space of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium J as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence. Thus no set of SH seismic experiments performed in the isotropic medium in the symmetry plane of the underlying half-space can reveal anything about the monoclinic anisotropy of that underlying half-space. Moreover, even when the underlying monoclinic half-space is stratified, there exists a stratified isotropic half-space that gives the identical reflection coefficient as the stratified monoclinic half-space for all angles of incidence and all frequencies.  相似文献   

14.
TTI介质弹性波相速度与偏振特征分析   总被引:8,自引:8,他引:0       下载免费PDF全文
相速度和偏振方向是研究地震波传播规律和描述介质特性的重要参数,在理论研究和实际应用中有重要作用.本文假定倾斜横向各向同性(TTI)介质对称轴位于观测坐标系XOZ面内,在此观测坐标系下直接推导了TTI介质弹性波相速度和偏振方向的解析表达式,再进一步利用Thomsen弱各向异性理论,推导了弱各向异性近似条件下弹性波相速度以及qP波和qSV波偏振方向表达式.理论分析和数值试例表明,在相速度方面,随着各向异性介质参数改变,qP波和qSH波速度变化较为平缓,qSV波速度变化较为剧烈.弹性波相速度近似式误差均较小,能较好地近似精确相速度.在偏振方向方面,SH波偏振方向只是传播方向和对称轴倾角的函数,而与各向异性参数无关,SH波偏振方向既垂直于传播方向,又垂直于TTI介质对称轴方向.除特定方向外,qP波和qSV波的偏振方向与传播方向均成一定角度,并且随TTI介质对称轴倾角的改变而改变;在精确和近似情况下,qP波和qSV波的偏振方向始终垂直;在精度允许范围内,偏振方向的弱各向异性近似式与理论解析式吻合较好.  相似文献   

15.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

16.
Pure-mode wave propagation is important for applications ranging from imaging to avoiding parameter tradeoff in waveform inversion. Although seismic anisotropy is an elastic phenomenon, pseudo-acoustic approximations are routinely used to avoid the high computational cost and difficulty in decoupling wave modes to obtain interpretable seismic images. However, such approximations may result in inaccuracies in characterizing anisotropic wave propagation. We propose new pure-mode equations for P- and S-waves resulting in an artefact-free solution in transversely isotropic medium with a vertical symmetry axis. Our approximations are more accurate than other known approximations as they are not based on weak anisotropy assumptions. Therefore, the S-wave approximation can reproduce the group velocity triplications in strongly anisotropic media. The proposed approximations can be used for accurate modelling and imaging of pure P- and S-waves in transversely isotropic media.  相似文献   

17.
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1D anisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets - travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm - isometric algorithm - was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P- and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought. Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the VP/VS ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters.  相似文献   

18.
弱各向异性介质中P-SV波弹性阻抗与流体识别因子(英文)   总被引:4,自引:0,他引:4  
基于Petr Jilek正交各向异性介质中的P-SV波反射系数精确公式,通过近似得到VTI和HTI介质中的P-SV波近似公式,同时结合Kenneth横波弹性阻抗原理,推导建立了VTI和HTI介质中P-SV波的弹性阻抗近似公式;在此基础上构建了弱各向异性介质中的流体识别因子公式,通过理论模型对Castagna和Smith的岩性组合进行了识别;最后详细分析了各向异性参数的取值对P-SV波弹性阻抗及识别因子产生的影响及变化趋势。  相似文献   

19.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

20.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号