首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of a horizontal conducting cylinder embedded in a uniform conducting earth is studied using mathematical models of uniform and line current source excitation for the period range 10 to 104 s. The line current source is located at heights ranging from 100–750 km above the surface of the earth. From the calculated results, it is shown that for periods greater than 103 s the ratioE x /H y at the surface of the earth for localized fields, such as the auroral and equatorial electrojet normally situated at heights of about 100 km, is considerably different from that for a uniform source. The results presented also show that the magneto-telluric method of geophysical prospecting for ore bodies in regions of the electrojet may not be very practicable for periods exceeding 103 s.  相似文献   

2.
3.
We present a 3D approach to numerical modeling of the borehole-surface electromagnetic (BSEM) method. The 3D electromagnetic response created by a vertical line current source in a layered medium is modeled using the 3D integral equation method. The modeling results are consistent with analytical solutions. 3D Born approximation inversion of BSEM data is also conducted for reservoir delineation. The inversion method is verified by a synthetic reservoir model.  相似文献   

4.
本文提出一种数值模拟井地电磁法的方法。用体积分方程法对层状介质中的垂直长导线源三维电磁响应做了三维模拟。模拟的结果与解析解对比误差很小,说明算法是正确的。开发了井地电磁法Born近似反演程序,理论模型合成的数据反演结果非常好。  相似文献   

5.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

6.
Recent activity in important approximate methods used in numerical electromagnetic (EM) modeling is reviewed. Comparisons between the results obtained by different numerical methods and between analytical and numerical solutions are presented. The importance of 3D modeling and thin sheet approximations are pointed out.This review also considers and summarizes studies of characteristic dimensions in three topics: source fields, numerical modeling and physical phenomena in the earth and interpretation. The skin depth (i.e., generally the attenuation) of the EM energy is considered to be the most important and fundamental characteristic dimension.  相似文献   

7.
Electromagnetic induction in the Vancouver Island region for a uniform inducing source field for 300 s period is investigated with the aid of three-dimensional (3-D) numerical and analogue model results and field site measurements. The thin sheet numerical model, based on the subducting Juan de Fuca plate analogue model ofDosso et al., consists of a 5km thick non-uniform thin sheet (comprising the lateral conductivity contrasts arising from the land, the varying depth ocean, and the sediment) underlain by a four-layer conductive structure. The four-layer conductive structure beneath the non-uniform thin sheet simulates the effect of the Juan de Fuca plate subducting Vancouver Island. To examine the effects of the ocean channel depth between Vancouver Island and the British Columbia (Canada) mainland, numerical results were obtained for two channel depths (0 and 600 m). The results indicate that the channel plays an important role in the geomagnetic response in the central and inner coastal regions of Vancouver Island. The general agreement of the 3-D numerical model induction arrows with the analogue model and field site induction arrows for 300 s supports the premise of a layered conductive substructure dipping at a small angle, at most, beneath Vancouver Island.Lithoprobe Publication No. 311.  相似文献   

8.
An analytical formulation is developed for the resultant electromagnetic field of an oscillating vertical magnetic dipole located over a thin conductive sheet of infinite extent. The sheet is characterized by a conductivity-thickness product or conductance d that may be a function of the horizontal coordinates. The system of integral equations arising in the general formulation is simplified greatly when azimuthal symmetry prevails. Numerical results for a Gaussian variation of d in the radial direction are presented for the case of a symmetrically located source. These results are for the fields at the level of the source dipole over the conductive sheet. It is shown that the quadrature response of the sheet is enhanced when there is rapid variation of the conductance. The null in the resultant wave tilt is also found to be shifted toward the direction of increasing conductance.  相似文献   

9.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

10.
The behavior of electric and magnetic field variations over the eastern coastal region of North America is studied using a scaled laboratory electromagnetic analogue model. The model source frequency used simulates a period of 1 h in the geophysical scale. The results indicate that deflection and conductive channelling of induced electric current is important for both the E-polarization (northeast-southwest direction of the electric field of the source) and the H-polarization (northwest-southeast) of the source field. In the model, conductive channelling occurs through the Strait of Belle Isle, Cabot Strait, and in the St. Lawrence River. Current deflection is particularly prevalent around the southeast coast of Newfoundland for both E- and H-polarization, and around the northeast coastline of Nova Scotia for E-polarization. The model results also show current deflection by cape and bay coastal features, as well as by ocean depth contours.A comparison of model measurements for the cases of a uniform source field and a line current source indicate that the nature of the source field has a measurable but surprisingly small effect on the vertical to horizontal magnetic field ratio for both E- and H-polarizations, and negligible effect on the magnetotelluric ratio for coastal regions.The model fields in coastal regions were found to be strongly influenced by induced currents, deflected and channelled by the coastline and ocean bathymetry, and were dependent on the nature and particularly the polarization of the source field. Thus, along the complex coastline of eastern North America, a wide range of electric and magnetic field values should be expected. In some regions the coast effect, measured by the vertical to horizontal magnetic field ratio at the coast, could be expected to be extremely small or absent, while in other regions the ratio could approach a value as large as unity for variations of 1 h period.  相似文献   

11.
Fast S-inversion is a method of interpretation of time-domain electromagnetic (TDEM) sounding data using the thin sheet model approach. Within the framework of this method, the electromagnetic (EM) response measured at the surface of the earth at every time delay is matched with that of a thin sheet model. The conductivity change with depth is obtained using the conductance, S, and depth, d, of the equivalent thin sheet. We analyze two different numerical techniques, the differential S-transformation and the regularized S-inversion, to determine the parameters of the thin sheet. The first technique is a direct differential transformation of the observed data into conductance and depth values. It is fast and requires no iterations or starting model. The second technique uses a regularized inversion scheme to fit the measured response with that of a thin sheet. In both techniques, the retrieved conductance values are differentiated with respect to depth to obtain the conductivity change with depth. We apply S-inversion to three-dimensional synthetic data and we successfully locate the local conductors. We also demonstrate a case history by interpreting TDEM data obtained at the Nojima fault zone in Japan. The results clearly indicate the location of the fault zone.  相似文献   

12.
井间电磁场时域有限差分数值模拟   总被引:6,自引:3,他引:3       下载免费PDF全文
为进一步了解井间地下介质结构及其电性特征,本文用时域有限差分方法(FDTD),实现了井间电磁场响应的数值模拟.激发源是探测深度相对磁偶极子更大一些的电偶极子,首先选择一个位于井轴上的垂直电偶极子作为场源,并假设参与计算的介质相对于发射井井轴是轴向对称的,这样可将研究区域作为二维问题处理.推导了二维井间电磁波传播时域差分公式.该方法适用于任何方向入射的电偶极子源,尤其善于解决频域差分方法所难以描述的宽频脉冲.给出了井间金属圆柱和矿体圆柱数值模拟2个例子,结果表明,时域有限差分方法能有效的模拟井间地下介质中电磁波的传播,揭示电磁波传播规律.该方法速度快、精度高、结果稳定,适合用于井间电磁场反演成像的正演响应计算.  相似文献   

13.
This work compares experimental analogue model measurements and finite-difference numerical calculations of the electric and magnetic fields for a highly conducting slab embedded in a poorly conducting host earth for three different source field configurations. Measurements and calculations were carried out for a uniform source, a sheet current source with a y exp(?ay) current intensity distribution, and a horizontal magnetic dipole source. The results indicate reasonable agreement with some exceptions between the analogue and numerical methods. The source field is found to have an important effect on the field anomalies at the interface of the highly conducting slab and the poorly conducting host medium.  相似文献   

14.
时域瞬变电磁法三维有限差分正演技术研究   总被引:2,自引:2,他引:0       下载免费PDF全文
瞬变电磁法应用广泛,三维数值模拟是研究复杂地质模型异常响应规律的重要技术手段之一,也是反演的基础.目前瞬变电磁数值模拟的不足主要有两个方面:第一,场源是在地表水平、浅层介质均匀的条件下计算的,限制了应用范围;第二,地下边界采用Dirichlet边界条件,导致计算空间很大,耗时较长.针对上述问题,在三维正演时,场源采用有限长细导线模型,在Maxwell有源差分方程中直接加入电流密度进行计算.在地表面加入空气层,避免了复杂的向上延拓计算,也可以对地形影响下的响应规律进行分析.在空气边界和地下边界均采用CPML吸收边界条件,并改进了CPML的参数分布,能够吸收空气介质和大地介质中的低频电磁波而反射误差极小,在满足计算精度的条件下可以有效减小节点数量.对循环迭代方法进行优化,将计算域、CPML区域和场源的空间循环统一转化为矩阵方式,加快了计算速度,但是空间消耗增大了约4~5倍.采用三维有限差分正演算法对均匀半空间模型、层状模型和地形模型进行了计算,并与解析解进行了对比验证.  相似文献   

15.
李刚  李予国  韩波  段双敏 《地球物理学报》2017,60(12):4887-4900
在海洋可控源电磁法勘探中,接收站常置于海底.在进行海洋电磁场模拟时,由于海水和海底介质存在显著电性差异,这给海底接收点处场值的求取带来困难.本文提出一种新的接收点插值算法,该算法考虑到海底电场法向分量不连续性问题,用法向电流分量进行插值以准确求取海底任意接收点处电磁场值.本文利用交错网格有限差分法实现了二维介质中频率域海洋可控源法(CSEM)正演.对构造走向做傅里叶变换,将三维电磁模拟问题转换为波数域2.5维问题,即三维场源激励下针对二维地电模型的电磁模拟问题.使用交错网格有限差分法,基于一次场/二次场分离方法导出波数域二次电场离散形式,并进一步求得波数域电磁场.采用本文提出的改进的插值算法可求得海底任意接收点处波数域电磁场,采用傅里叶逆变换对波数域电磁场进行积分可得到接收点处空间域电磁场.模型算例表明,与常规的线性插值和严格插值算法相比,本文提出的改进的插值算法具有更高的精度.  相似文献   

16.
We investigate the seismoelectric/electroseismic wavefields excited by a point source in an air/seawater/three-layered porous medium configuration containing a hydrocarbon layer. The results show that if an explosive source for excitation is used, receivers at seafloor can record the coseismic electromagnetic fields accompanying the P, S, fluid acoustic waves and the interface responses converted from the acoustic waves at seafloor interface and from the seismic waves at the interfaces beneath the seafloor. Employing a vertical electric dipole source shows that, with the exception of the interface responses converted from electromagnetic waves at seafloor, the interface responses converted from transmitted electromagnetic waves at the interfaces beneath the seafloor can also be identified. Given that the strength of the explosive source is within excitation capability of industry air guns, the generated interface responses from the hydrocarbon layer can be detected by current electromagnetic sensors considering the low ambient noise at the seafloor. Our results demonstrate the feasibility of the seismoelectric method applied to marine hydrocarbon exploration. Electroseismic modelling results suggest that it is not practical to employ this method to prospect marine hydrocarbon layer due to the weak interface response signal, unless a much larger current is injected into seafloor.  相似文献   

17.
长偶极大功率可控源电磁波响应特征研究   总被引:16,自引:9,他引:7       下载免费PDF全文
地球物理学中关于电磁波勘探研究通常采用的是地球半空间模型.然而,对于几十公里的有限长电缆源(长偶极源),远距离电磁波场探测必须要考虑电离层的影响,它是一个全空间问题.关于包含电离层、空气层和地球介质(我们称“地-电离层”模式)的电磁波场特征的研究在国外较少,国内几乎是空白.本文采用全空间积分方程法首先对小尺度的可控源电磁波场特征进行了研究,由于此时电离层的影响可忽略,它应该和半空间成熟的CSAMT模拟结果一致,对比结果表明,二者是一致的,验证了全空间模拟方法的可靠性和有效性.随后进行了50 km长电缆电离层和空气层高度都为100 km的“地-电离层”模式大尺度电磁波场模拟,以探讨大尺度可控源电磁波场的特征.给定频率的“地-电离层”模式电磁场的衰减曲线表明长电缆远距离电磁波场由于受电离层的作用存在衰减逐渐变小的过渡场和衰减变小的波导场.为了探讨复杂介质“地-电离层”模式电磁波特征,对“地-电离层”模式的典型地盾和地台多层介质模型进行了数值模拟,得到了偶极源长度50 km、电流200A、收发距离远达1600 km和2500 km的合理的电磁场结果.最后,对一简单含油储层结构模型进行了长偶极、大功率、远距离电磁波场响应计算.储层横向不均匀复杂结构模拟的结果表明,考虑电离层和大气层的“地-电离层”模式大尺度深层复杂介质模拟时,电磁场对深部目标体仍有很好的异常响应.  相似文献   

18.
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) timedomain transient electromagnetic secondary field of the line source based on the DuFort-Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the flat layered model with high precision—the maximum relative error is less than 0.01% between our method and the analytical method—and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.  相似文献   

19.
卢杰  李予国 《地球物理学报》2019,62(8):3189-3198
本文基于对应原理将似稳态条件下频率域电磁场扩散方程转换成虚拟波动域电磁场波动方程,采用高阶时域有限差分进行求解,引入复频移完全匹配层吸收边界条件,降低了内存需求,提高了计算效率,并在虚拟波动域用伪δ函数离散电偶极源,实现了虚拟波动域任意取向电偶极源三维海洋可控源电磁场高阶时域有限差分正演算法.通过与拟解析解和频率域三维可控源电磁场数值模拟结果的对比,验证了本文算法的正确性和高效性,且探讨了网格参数和边界条件对不同频率电磁场模拟结果的影响.  相似文献   

20.
The inductive response of a conducting horizontal cylinder embedded in a uniform earth is studied using numerical results obtained for an analytical solution for the problem of a conducting cylinder buried in a homogeneous earth for the case of a uniform inducing field. A check of the validity of the numerical results is made by a comparison with analogue model measurements for a number of cases. Numerical results for a range of cylinder radii (a = 1–10 km), depths of burial (d= 0–4 km), conductivity contrasts (σ2= 10?2-10 Sm?1), and source frequencies (f= 10?1-10?4 Hz) of interest in the interpretation of magnetotelluric field measurements are presented. The results indicate that for a uniform inducing field the conductivity and depth of burial of a horizontal cylindrical inhomogeneity are best determined through a measurement of the amplitudes Hy, Hz and Ex and the phases φy and Ψx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号