首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a novel multidimensional composite periodic foundation for seismic isolation. The composite periodic foundation achieves multidimensional attenuation by innovative arrangement of periodic structures and taking advantage of the directional attenuation zone of periodic structures. Directional attenuation zones of periodic structures are derived for the in‐plane wave, and the impact of geometrical parameters of the periodic structure on the characteristics of the directional attenuation zones is studied. The effectiveness of the proposed composite periodic foundation is demonstrated through application in seismic isolation for nuclear power plant structures. Harmonic analysis and time history analysis results show that the proposed composite periodic foundation with low‐frequency directional attenuation zones can effectively reduce vibrations of the upper structure in both horizontal and vertical directions.  相似文献   

2.
碟形弹簧竖向减震体系的分析与研究   总被引:1,自引:0,他引:1  
对碟形弹簧竖向减震体系利用时程分析方法对其进行动力分析,并输入不同场地、不同频谱的地震波考察其减震效果,验证了碟形弹簧在合理控制其刚度的前提下可以起到有效减小竖向地震的作用。  相似文献   

3.
新型单自由度基础隔震体系简化计算方法研究   总被引:4,自引:1,他引:4  
本文建立了一种新型的单自由度体系基础隔震结构实用设计方法,该方法考虑了上部结构的变形、简便,合理,可靠,与传统抗震设计方法概念比较接近,便于在工程应用中推广。  相似文献   

4.
A roller seismic isolation bearing is proposed for use in highway bridges. The bearing utilizes a rolling mechanism to achieve seismic isolation and has a zero post‐elastic stiffness under horizontal ground motions, a self‐centering capability, and unique friction devices for supplemental energy dissipation. The objectives of this research are to investigate the seismic behavior of the proposed bearing using parametric studies (1) with nonlinear response history analysis and (2) with equivalent linear analysis according to the AASHTO guide specifications, and by comparing the results from both analysis methods (3) to evaluate the accuracy of the AASHTO equivalent linear method for predicting the peak displacement of the proposed bearing during an earthquake. Twenty‐eight ground motions are used in the studies. The parameters examined are the sloping angle of the intermediate plate of the bearing, the amount of friction force for supplemental energy dissipation, and the peak ground acceleration levels of the ground motions. The peak displacement and base shear of the bearing are calculated. Results of the studies show that a larger sloping angle does not reduce the peak displacement for most of the parametric combinations without friction devices. However, for parametric combinations with friction devices, it allows for the use of a higher friction force, which effectively reduces the peak displacement, while keeping a self‐centering capability. The AASHTO equivalent linear method may underestimate the peak displacement by as much as 40%. Vertical ground motions have little effect on the peak displacement, but significantly increase the peak base shear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a new configuration of seismic isolation foundation containing several concrete layers and some rubber blocks is proposed. The concrete layers and the rubber blocks are placed periodically to form a periodic foundation. To study the isolation ability of this new configuration of periodic foundation, an equivalent analytical model is established. For practical applications, two very useful formulas are obtained. Using these formulas, the low bound frequency and the width of the first attenuation zone can be directly approximated without the calculation of dispersion structure. This new configuration of seismic isolation foundation enjoys the first attenuation zone between 2.15 Hz and 15.01 Hz, which means that the components of seismic waves with frequencies from 2.15 Hz to 15.01 Hz cannot propagate upward in the foundation. To illustrate the efficiency of this seismic isolation foundation, the seismic responses of a 6-story frame with three different foundations are simulated. Numerical simulations show that the seismic responses of the structure with the periodic foundation are greatly attenuated as compared with those of the structure with no isolation base or with traditional rubber bearings.  相似文献   

6.
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.  相似文献   

7.
为探究不同减隔震措施对短边距混凝土网架平板支座的抗震性能和破坏模式的影响,分别针对不同混凝土边缘距离以及采用不同减隔震措施的四个平板支座缩尺试件进行拟静力加载试验,对平板支座破坏模式、滞回曲线、箍筋应变进行分析。试验结果表明:平板支座的运动伴随着平动和转动。当混凝土边距不足时,边缘混凝土在压剪作用下,会发生冲切破坏。开长孔支座能较好的释放水平位移,并且对锚栓约束较弱,使其受力较小,从而减轻了边缘混凝土的受力。对采用橡胶垫板的支座,混凝土边缘未发生破坏,原因是橡胶垫具有良好的变形能力,可以释放支座的位移和转角,使得边缘混凝土受力较小。因此,针对混凝土边缘距离较短的平板支座节点,为防止混凝土发生边缘破坏,可采用开长孔支座,但需要对孔长进行合理的设计。采用橡胶垫支座也可避免混凝土发生边缘破坏,橡胶垫板可按照我国相关设计规范进行设计。  相似文献   

8.
In this paper the question of possible adverse effects of damping in seismic isolation because of higher mode response is investigated by means of simple models with a few degrees of freedom (DOF). In particular the second mode response of a 2 DOF system is examined in detail for both viscous and hysteretic (e.g. friction or elastoplastic) damping devices. Qualitative and approximate quantitative estimates are obtained by neglecting the influence of the modal coupling terms, due to viscous damping or friction forces, on the first mode response. It is shown that additional viscous damping has a diminishing effect on base displacement, storey shear force and floor spectra values in the vicinity of the first mode resonance. However, a significant amplification of the floor spectra values near the higher mode frequencies may occur. In accordance with the results of previous works, compared with the viscous damping case, hysteretic damping amplifies moderately the first storey shear force and significantly the upper storeys shear force. It also results, in a much more pronounced amplification of the floor spectral values than viscous damping, in the vicinity of the higher eigenfrequencies. However, the higher modes' response is milder if a realistic velocity dependence of the friction coefficient is taken into account. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper extends the scope of seismic isolation by introducing an innovative uplift‐restraining Friction Pendulum system. Termed the XY‐FP isolator, the new isolation device consists of two orthogonal opposing concave beams interconnected through a sliding mechanism that permits tension to develop in the bearing, thereby preventing uplift. Owing to its distinct configuration, the XY‐FP isolator possesses unique properties for a seismic isolator, including uplift restraint, decoupling of the bi‐directional motion along two orthogonal directions, and capability of providing independent stiffness and energy dissipation along the principal horizontal directions of the bearing. The study concentrates on introducing the concept and establishing the underlying principles of operation of the new XY‐FP isolator, formulating the mathematical model for the XY‐FP isolator, and presenting its mechanical behaviour through a displacement‐control testing program on a single XY‐FP isolator. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper.The expansion DSSI bearing is characterized by its good ...  相似文献   

11.
This paper presents a mechanical model for predicting the behavior of elastomeric seismic isolation bearings subject to combined end rotations and shear deformation. The mechanical model consists of a series of axial springs at the top, mid‐height and bottom of the bearing to vertically reproduce asymmetric bending moment distribution in the bearings. The model can take into account end rotations of the bearing, and the overall rotational stiffness includes the effect of the variation of vertical load on the bearing and the imposed shear deformation. Static bending tests under various combinations of vertical load and shear deformation were performed to identify the mechanical characteristics of bearings. The test results indicate that bearing rotational stiffness increases with increasing vertical load but decreases with increasing shear deformation. Simulation analyses were conducted to validate the new mechanical model. The results of analyses using the new model show very good agreement with experimental observations. A series of seismic response analyses were performed to demonstrate the dynamic behavior of top‐of‐column isolated structures, a configuration where the end rotations of isolation bearings are typically expected to be larger. The results suggest that the end rotations of elastomeric bearings used in practical top‐of‐column isolated structures do not reduce the stability limit of isolation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The yield level of an insulator is one of the important parameters which are related to responses and absorbing energy under seismic input energy in isolated structures. The purpose of this paper is to determine the optimal ratios of yield force of the isolator (Qy) to the total weight of the structures (W). To obtain the optimal ratio, 1044 two-degree-of-freedom isolated bridge models, which have bilinear isolators, were selected. These 2-DOF isolated bridge models with superstructure isolation can consider pier flexibility and various parameters of the isolator. Two formulas for determining the optimal yield ratio are proposed and compared with the previous researches. RAE (the ratio of absorbed energy by the isolator to the total input energy) is related directly to structural responses, and Optimal Yield Ratio (OYR), defined as a yield ratio at maximum RAE, can be obtained from the relationship between RAE and Qy/W. Here, we found that RAE is a reliable factor to evaluate OYR, and it is proportional to earthquake amplitudes under the same kinds of earthquake loadings. Using the proposed formulas, OYR is determined and the optimal yield force of the isolator can be obtained easily and reliably at a seismic isolation design stage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
The study reported in this paper investigates the feasibility of developing an active base isolation system for the protection of bridges subjected to earthquakes. The proposed system incorporates spherical supports, cams and springs which can be optimally designed to minimize the transmissibility of the seismic disturbances to the bridge. The considered example shows that the proposed design is implementable and can provide an order of magnitude reduction in the maximum stress resulting from seismic waves acting on the bridge in the transverse or longitudinal direction. Since the system performance is highly dependent on the rapid unlocking of the cams in the event of a seismic disturbance, careful consideration should be given to the design of a reliable cam release control. This can be achieved by spring loading each cam such that it would be normally unlocked. A hydraulic actuator would be used to force it to rotate to the locking position under fluid pressure which would be constantly maintained at the design level during normal conditions. The actuator would be equipped with a quick response release valve for rapidly releasing the pressure and consequently unlocking the cam as soon as an earthquake is detected. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
For the purpose of predicting the large‐displacement response of seismically isolated buildings, an analytical model for elastomeric isolation bearings is proposed. The model comprises shear and axial springs and a series of axial springs at the top and bottom boundaries. The properties of elastomeric bearings vary with the imposed vertical load. At large shear deformations, elastomeric bearings exhibit stiffening behavior under low axial stress and buckling under high axial stress. These properties depend on the interaction between the shear and axial forces. The proposed model includes interaction between shear and axial forces, nonlinear hysteresis, and dependence on axial stress. To confirm the validity of the model, analyses are performed for actual static loading tests of lead–rubber isolation bearings. The results of analyses using the new model show very good agreement with the experimental results. Seismic response analyses with the new model are also conducted to demonstrate the behavior of isolated buildings under severe earthquake excitations. The results obtained from the analyses with the new model differ in some cases from those given by existing models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
组合基础隔震结构双向地震反应分析   总被引:2,自引:0,他引:2  
本文采用双向耦合恢复力模型模拟组合隔震系统中隔震支座的双向耦合效应,对组合基础隔震结构进行了单向和双向地震反应对比分析,分析表明在水平双向地震作用下结构各层的加速度反应较小,隔震层的层间位移较大,而上部结构的层间位移较小,并且在水平双向地震作用下,支座的最大位移明显大于单向地震作用时支座的最大位移,因而应考虑水平双向地震作用对组合基础隔震结构地震反应和隔震支座性能的影响。  相似文献   

16.
层间隔震结构计算模型的简化分析   总被引:14,自引:3,他引:14  
本文通过对层间隔震结构整体动力性能及时域反应的分析,用模态综合方法建立了该结构计算分析简化模型。该模型合理、可靠,为建立实用设计方法、推广层间隔震结构的应用提供了有效途径。  相似文献   

17.
Elastomeric isolation bearings consist of multiple rubber layers with their top and bottom surfaces bonded to steel plates to restrict compressive deformation. Deformation constraints result in a variation of elastic modulus over the cross section of the rubber layers. In this paper, we describe a normalized compression modulus distribution on a circular rubber pad. The compressive and bending moduli of the rubber pad can be reproduced by applying the distribution to a series of axial springs. We also present a mechanical model for predicting the behavior of elastomeric seismic isolation bearings subject to large shear deformation and high compressive load. The mechanical model consists of a series of multiple shear springs at midheight and a series of axial springs at the top and bottom interfaces of the bearing. Simulation analyses of bearing tests were conducted to validate the proposed model. The analyses demonstrated that a model for circular lead-rubber bearings can successfully capture the influence of the axial load magnitude on the bearing shear behavior. The new model can simulate much more realistic behavior than prior models based on a uniform modulus assumption.  相似文献   

18.
This article considers the effectiveness of a seismic isolation system composed of a shallow layer of soil mixed with sand and rubber from shredded tires. A thorough review of past work is first provided, which is then followed by an evaluation of the constitutive properties of sand-rubber soil mixtures when these undergo large states of deformation and slip. Finally, a comprehensive set of simulations that involve a structure underlain by a strongly non-linear, seismic isolating layer when subjected to a variety of actual earthquakes scaled to various peak accelerations, are considered in detail. It is shown that the concept of using soil-rubber mixtures for the purposes of seismic isolation appears promising. A thickness for the rubber–soil mixture of just 2–3 m is likely to be enough to achieve good levels of reductions in the seismic response of the structure. This suggests the desirability of following these analyses with large-scale experimental verifications, not only to fully validate the concept, but also to quantify and assess the numerical predictions with our simple even if non-linear mechanical models, and verify the large-strain constitutive properties of the soil mixtures inferred from laboratory analyses.  相似文献   

19.
摩擦-碟簧三维复合隔震支座的性能试验研究   总被引:2,自引:0,他引:2  
对适用于大跨结构的摩擦-碟簧三维复合隔震支座进行了振动台试验研究,该支座在水平向和竖向分别采用摩擦滑移装置和碟型弹簧隔震。在水平向,试验重点测试了简谐激励和地震动激励下支座的滞回性能,考察了竖向荷载变化及地震动强度对隔震性能的影响,以期为建立水平隔震理论模型提供依据;在竖向,对碟型弹簧的等效阻尼比和等效刚度进行了测试,研究了竖向预压荷载和动力荷载对竖向滞回性能的影响。结果表明,复合隔震支座在水平向和竖向均具有较好的滞回性能,竖向等效阻尼比在0.10~0.15间,且随着预压荷载的增加而增大。  相似文献   

20.
A systematic study is made of the effects of seismic impacts between the base of an isolated building and the surrounding retaining wall. The analysis is performed without using gap elements or assuming values of the coefficient of restitution and the duration of impact. The analysis captures the effects of wave travel along the height of the building and of the associated energy loss. It poses no numerical difficulties. Results show that for elastic systems the base shear generated by impacts can be higher than the weight of the building; base shear increases with increase in the stiffness of the retaining wall, stiffness of the building and the mass of the base mat. A significant fraction of the initial kinetic energy of the system is lost by impacts; energy loss increases with increase in the stiffness of the retaining wall, system damping and mass of the base mat. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号