首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relations of river morphology and tsunami propagation in rivers were studied at several rivers in the Tohoku region during The Great Chilean Tsunami of 2010 and The Great East Japan Tsunami of 2011. It was found that river mouth morphological features play an important role in the intrusion of low magnitude tsunamis in which the geological and geographical conditions are an important factor. Nevertheless, the effects of these features were not found in the case of an extreme tsunami wave. As the wave enters the river, the propagation depends on other factors. It was found that the intrusion distance correlates well to the riverbed slope. The measurements of water level and riverbed slope were analyzed to propose an empirical method for estimating the damping coefficient for the tsunami propagation in rivers based on the tsunami of 2011. The proposed empirical method was used to approximate the length of the tsunami intrusion into a river by assuming that the furthest distance is given for the ratio of local tsunami wave height to the tsunami wave height at the river entrance of 0.05 (5 %). The estimated intrusion length from the proposed method in this study shows a good comparison with measurement data.  相似文献   

2.
We studied two tsunamis from 2012, one generated by the El Salvador earthquake of 27 August (Mw 7.3) and the other generated by the Philippines earthquake of 31 August (Mw 7.6), using sea level data analysis and numerical modeling. For the El Salvador tsunami, the largest wave height was observed in Baltra, Galapagos Islands (71.1 cm) located about 1,400 km away from the source. The tsunami governing periods were around 9 and 19 min. Numerical modeling indicated that most of the tsunami energy was directed towards the Galapagos Islands, explaining the relatively large wave height there. For the Philippines tsunami, the maximum wave height of 30.5 cm was observed at Kushimoto in Japan located about 2,700 km away from the source. The tsunami governing periods were around 8, 12 and 29 min. Numerical modeling showed that a significant part of the far-field tsunami energy was directed towards the southern coast of Japan. Fourier and wavelet analyses as well as numerical modeling suggested that the dominant period of the first wave at stations normal to the fault strike is related to the fault width, while the period of the first wave at stations in the direction of fault strike is representative of the fault length.  相似文献   

3.
We studied the 11 March 2011 Tohoku tsunami through analysis of the sea level records from 21 tide gauge and 16 DART (Deep-ocean Assessment and Reporting of Tsunamis) stations from across the Pacific Ocean. The extreme power of this trans-oceanic tsunami was indicated by the trough-to-crest heights of 3.03 m at Arena Cove on the western coast of the USA and 3.94 m at Coquimbo on the southern coast of Chile. The average value of the maximum amplitude was 163.9 cm for the examined tide gauge records. At many coastal tide gauge stations the largest wave arrived several hours after the first arrival of the tsunami wave, and the tsunami lasted for a long time with an average duration of 4 days. On the contrary, at most of the DART stations in the deep ocean, the first wave was the largest, the tsunami amplitudes were smaller with an average maximum of 51.2 cm, and the durations were shorter with an average of 2 days. The two dominant tsunami periods on the DART records were 37 and 67.4 min, which are possibly attributed to the width and length of the tsunami source fault, respectively. The dimensions of the tsunami source was estimated as 233 km × 424 km. Wavelet analyses of tide gauge and DART records showed that most of the tsunami energy was distributed at the wide period band of around 10–80 min during the first hour after the tsunami arrival, then it was concentrated in a relatively narrower band. The frequency-time plots showed the switches and lapses of tsunami energy at the 35- and 65-min period bands.  相似文献   

4.
Tsunami boulders deposited along the coast constitute important geological evidence for paleotsunami activity. However, boulders can also be deposited by large storm waves. Although several sedimentological and theoretical methods have been proposed to differentiate tsunami and storm wave affected boulders, no appropriate numerical method exists for their differentiation. Therefore, we developed a new numerical scheme to differentiate tsunami and storm wave boulders for coastal boulders on Ishigaki Island, Japan. In this area, tsunami and storm waves have emplaced numerous boulders on the reef and the coast. By conducting numerical calculations of storm waves in this region, we estimated the size of a storm wave that can explain the maximum clast size distribution of boulders on the reef. Consequently, we showed that a wave with a combination of 8 m in initial wave height and 10 s period can satisfy the above conditions when we assume mean sea level. In contrast to the boulders on the reef, all boulders deposited along the shore are heavier than the calculated possible maximum clast size distribution by the storm wave. Therefore, we confirmed these boulders as being of tsunami origin. Results of previous studies showed that they were most likely deposited or reworked by the 1771 Meiwa tsunami. Then, using the tsunami boulders, we numerically estimated the wave period and amplitude of the 1771 Meiwa tsunami, which should have had a 4–5 min period and 5.6–5.9, 6.3–7.0 m amplitude, respectively. Using the proposed scheme, it is possible to differentiate tsunami and storm wave boulders and estimate the size of past storm waves and tsunami waves, although it is noteworthy that there are exceptions for which the scheme cannot be applied.  相似文献   

5.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

6.
— The Papua New Guinea (PNG) tsunami of 1998 is re-examined through a detailed review of the field survey as well as numerous numerical computations. The discussion of the field survey explores a number of possible misinterpretations of the recorded data. The survey data are then employed by a numerical model as a validation tool. A Boussinesq model and a nonlinear shallow water wave (NLSW) model are compared in order to quantify the effect of frequency dispersion on the landslide-generated tsunami. The numerical comparisons indicate that the NLSW model is a poor estimator of offshore wave heights. However, due to what appears to be depth-limited breaking seaward of Sissano spit, both numerical models are in agreement in the prediction of maximum water elevations at the overtopped spit. By comparing three different hot-start initial profiles of the tsunami wave, it is shown that the initial shape and orientation of the tsunami wave is secondary to the initial displaced water mass in regard to prediction of water elevations on the spit. These numerical results indicate that agreement between numerical prediction of runup values with field recorded values at PNG cannot be used to validate either a NLSW tsunami propagation model or a specific landslide tsunami hot-start initial condition. Finally, with the use of traditional tsunami codes, a new interpretation of the PNG runup measurements is presented.  相似文献   

7.
A nonlinear shallow water model in cylindrical polar coordinate system is developed, using an explicit finite difference scheme with a very fine resolution, to compute different aspects of tsunami at North Sumatra and the adjacent island Simeulue in Indonesia, and the Penang Island in Peninsular Malaysia. The pole of the frame is placed on the mainland of Penang (100.5°E) and the model area extends up to the west of Sumatra (87.5°E). The model is applied to simulate the propagation of tsunami wave towards North Sumatra, Simeulue and Penang Islands associated with Indonesian tsunami of 26 December 2004. The model is also applied to compute water levels along the coastal belts of those islands. Computed and observed water level data are found to be in good agreement and North Sumatra is found to be vulnerable for very high surges. The computed and observed arrival times of high surges are also in reasonable agreement everywhere. Further studies are carried out to investigate the effect of convective terms and it is found that their effects are insignificant in tsunami propagation and weakly significant for wave amplitude very near to the coast.  相似文献   

8.
Two remote tsunamis were recorded on the Pacific coast of Russia: a relatively weak Samoan tsunami of September 29, 2009 and a much stronger Chilean tsunami of February 28, 2010. In the area of the South Kuril Islands, records were obtained using autonomous bottom pressure gauges of the Institute of Marine Geology and Geophysics (IMGG). Additionally, for the oceanic coast of the Kamchatka Peninsula, Paramushir, and Bering Islands we used data transmitted from coastal tide gauges of the Russian Tsunami Warning Service (TWS). The maximum trough-to-crest heights of the Samoan tsunami were about 30–40 cm, and were recorded about 3 h after the first tsunami arrival. The maximum Chilean tsunami trough-to-crest wave heights were 218 cm at Severo-Kurilsk, 187 cm at Tserkovnaya Bay (Shikotan Island), and 140 cm at Khodutka Bay (Kamchatka Peninsula). The time between first and maximum waves reached 4 h. Strong sea level oscillations for both events range for a long time: about 15–17 h. The Samoan tsunami induced high-frequency oscillations; a considerable increase in spectral energy in the tsunami spectrum was observed at periods of 4–20 min. In contrast, the Chilean tsunami induced low-frequency oscillations; the dominant periods were 30–80 min. A probable reason for these differences is the different extensions of the source areas (the Chilean source was much larger than the Samoan source) and the different energy radiation directions from the sources. Local topography resonant effects were the main reason of well-expressed peaks in power spectra in different areas: with a period of 10 min (Khodutka Bay), 19–20 min (Malokurilskaya and Tserkovnaya bays), 29 min (Krabovaya Inlet), and 43 min (Avachinskaya Guba and Nikolskoe).  相似文献   

9.
Foraminiferal tests are commonly found in tsunami deposits and provide evidence of transport of sea floor sediments, sometimes from source areas more than 100 m deep and several kilometers away. These data contribute to estimates of the physical properties of tsunami waves, such as their amplitude and period. The tractive force of tsunami waves is inversely proportional to the water depth at sediment source areas, whereas the horizontal sediment transport distance by tsunami waves is proportional to the wave period and amplitude. We derived formulas for the amplitudes and periods of tsunami waves as functions of water depth at the sediment source area and sediment transport distance based on foraminiferal assemblages in tsunami deposits. We applied these formulas to derive wave amplitudes and periods from data on tsunami deposits in previous studies. For some examples, estimated wave parameters were reasonable matches for the actual tsunamis, although other cases had improbably large values. Such inconsistencies probably reflect: (i) local amplification of tsunami waves by submarine topography, such as submarine canyons; and (ii) errors in estimated water depth at the sediment source area and sediment transport distance, which mainly derive from insufficient identification of foraminiferal tests.  相似文献   

10.
Model predictions from a numerical model, Delft3D, based on the nonlinear shallow water equations are compared with analytical results and laboratory observations from seven tsunami-like benchmark experiments, and with field observations from the 26 December 2004 Indian Ocean tsunami. The model accurately predicts the magnitude and timing of the measured water levels and flow velocities, as well as the magnitude of the maximum inundation distance and run-up, for both breaking and non-breaking waves. The shock-capturing numerical scheme employed describes well the total decrease in wave height due to breaking, but does not reproduce the observed shoaling near the break point. The maximum water levels observed onshore near Kuala Meurisi, Sumatra, following the 26 December 2004 tsunami are well predicted given the uncertainty in the model setup. The good agreement between the model predictions and the analytical results and observations demonstrates that the numerical solution and wetting and drying methods employed are appropriate for modeling tsunami inundation for breaking and non-breaking long waves. Extension of the model to include sediment transport may be appropriate for long, non-breaking tsunami waves. Using available sediment transport formulations, the sediment deposit thickness at Kuala Meurisi is predicted generally within a factor of 2.  相似文献   

11.
To study tsunami soliton fission and split wave-breaking, an undistorted experiment was carried out which investigated tsunami shoaling on a continental shelf. Three models of the continental shelf were set up in a 205-m long 2-dimensional flume. Each shelf model was 100 m, long with slopes of either 1/100, 1/150, or 1/200. Water surface elevations were measured across the flume, including a dense cluster of wave gages installed around the point of wave-breaking. We propose new methods for calculating wave velocity and the wave-breaking criterion based on our interpretation of time series data of water surface elevation. At the point of wave-breaking, the maximum slope of water surface is between 20 to 50 deg., while the ratio of surface water particle horizontal velocity to wave velocity is from 0.5 to 1.2. The values determined by our study are larger than what has been reported by other researchers.  相似文献   

12.
This paper employs a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004, to identify and interpret the factors that have contributed to the significant spatial variability of the level of tsunami impact along the coastal belt of the eastern province of Sri Lanka. The model results considered in the present analysis include the distribution of the amplitude of the tsunami and the pattern of wave propagation over the continental shelf off the east coast, while the field data examined comprise the maximum water levels measured at or near the shoreline, the horizontal inundation distances and the number of housing and other buildings damaged. The computed maximum amplitude of the tsunami at water points nearest the shoreline along the east coast shows considerable variation ranging from 2.2 m to 11.4 m with a mean value of 5.7 m; moreover, the computed amplitudes agree well with the available field measurements. We also show that the shelf bathymetry off the east coast, particularly the submarine canyons at several locations, significantly influences the near-shore transformation of tsunami waves, and consequently, the spatial variation of the maximum water levels along the coastline. The measured values of inundation also show significant variation along the east coast and range from 70 m to 4560 m with a median value of 700 m. Our analyses of field data also show the dominant influence of the coastal topography and geomorphology on the extent of tsunami inundation. Furthermore, the measured inundation distances indicate no apparent correlation with the computed tsunami heights at the respective locations. We also show that both the computed tsunami heights and the measured inundation distances for the east coast closely follow the log-normal statistical distribution.  相似文献   

13.
Tide gauge data collected from Sri Lanka (three stations) and Western Australia (eleven stations) during the Indian Ocean tsunamis, which occurred in December 2004, March 2005, July 2006, and September 2007, and incorporated five tsunamis, were examined to determine tsunami behaviour during these events. During the December 2004 tsunami, maximum wave heights of 3.87 m and 1.75 m were recorded at Colombo (Sri Lanka) and Bunbury (Western Australia), respectively. The results indicated that although the relative magnitudes of the tsunamis varied, the tsunami behaviour at each station was similar. This was due to the effect of the local and regional topography. At all tide gauges, the spectral energy corresponding to periods between 20 and 85 minutes increased during the tsunami. The sea-level data obtained from the west and south coasts of Sri Lanka (Colombo and Kirinda) indicated the importance of wave reflections from the Maldives Island chain, which produced the maximum wave two to three hours after the arrival of the first wave. In contrast, Trincomalee on the east coast did not show evidence of a reflected wave. Similarly, along the west coast of Australia, the highest waves occurred 15 hours after the arrival of the first wave. Here, based on travel times, we postulated that the waves were reflected from the Mascarene Ridge and/or the Island of Madagascar. Reflected waves were not present in the 2006 tsunami, where the primary waves propagated away from topographic features. One of the main influences of the tsunami was to set up oscillations at the local resonance frequency. Because Sri Lanka and Western Australia have relatively straight coastlines, these oscillations were related to the fundamental period of the shelf oscillation. For Colombo, this corresponded to 75-minute period, whereas in Geraldton and Busselton (Australia), the four-hour period was most prominent; at Jurien Bay and Fremantle, the resonance period was 2.7 hours.  相似文献   

14.
一直以来,海啸波特征作为表征海啸潜在破坏性的参数指标得到了广泛应用,特别是针对近场极端海啸事件造成的灾害来说,这种表征具有较好的适用性.然而总结分析历史海啸事件造成的损失发现:在远场近岸及港湾系统中,海啸诱导的强流却是造成损失的主要原因.陆架或港湾振荡导致海啸波幅快速升降诱发强流,可能促使港工设施受到威胁及损害,进而对海啸预警服务及海事应急管理提出了新的挑战.因此,全面理解与评估海啸在港湾中诱发的灾害特征,探索港湾中海啸流的数值模拟方法,发展针对港湾尺度的海啸预警服务指导产品尤为迫切.受限于海啸流验证数据的缺乏及准确模拟海啸流技术方法的诸多不确定性,大部分海啸数值模拟研究工作主要是针对水位特征的研究及验证,可能导致对港湾中海啸灾害危险性认识的曲解与低估.本研究基于非线性浅水方程,针对夏威夷群岛三个典型港湾建立了精细化海啸数值模型(空间分辨率达到10 m),并联合有限断层破裂模型计算分析了日本东北地震海啸在三个港湾及其邻近区域的海啸特征,波、流计算结果与实测结果吻合较好,精细化的海啸港湾模型模拟结果可信.模拟发现港湾中较小的波幅,同样可以产生强流.综合分析日本东北地震海啸波、流特征对输入条件不确定性的响应结果发现:港湾中海啸波-流能量的空间分布特征差异较大,这与港湾系统中海啸波的驻波特性相关;相比海啸波幅空间特征,海啸流特征具有更强的空间敏感性;海啸流时空分布特征对输入条件的不确定性响应比海啸波幅对这些不确定性的响应更强,海啸流的模拟与预报更有挑战性;不确定性对海啸流计算精度的影响会进一步传导放大港湾海啸流危险性的评估及对港工设施产生的应力作用的误差,合理的输入条件对海啸流的精确模拟至关重要.最后,希望通过本文的研究可以从海啸波-流特征角度更加全面认识近岸海啸灾害特征,拓展海啸预警服务的广度与深度,从而为灾害应急管理部门提供更加科学合理的辅助决策产品.  相似文献   

15.
This paper describes the analysis of a parameter, “hydrodynamic demand,” which can be used to represent the potential for tsunami drag force related damage to structures along coastlines. It is derived from the ratio of drag force to hydrostatic force caused by a tsunami on the structure. It varies according to the instantaneous values of the current velocities and flow depths during a tsunami inundation. To examine the effects of a tsunami in the present study, the analyses were performed using the tsunami numerical model in two altered regular-shaped basins having different bottom slopes. The simulations were implemented using a single sinusoidal wave with particular initial conditions, such as leading elevation wave and leading depression wave profiles with different wave periods. Two different initial wave amplitudes were employed to assess the diversity in the distribution of the square of the Froude number Fr 2 along the coastline. The numerical results were compared quantitatively.  相似文献   

16.
William Power  Elena Tolkova 《Ocean Dynamics》2013,63(11-12):1213-1232
The response/transfer function of a coastal site to a remote open-ocean point is introduced, with the intent to directly convert open-ocean measurements into the wave time history at the site. We show that the tsunami wave at the site can be predicted as the wave is measured in the open ocean as far as 1,000+ km away from the site, with a straightforward computation which can be performed almost instantaneously. The suggested formalism is demonstrated for the purpose of tsunami forecasting in Poverty Bay, in the Gisborne region of New Zealand. Directional sensitivity of the site response due to different conditions for the excitation of the shelf and the bay’s normal modes is investigated and used to explain tsunami observations. The suggested response function formalism is validated with available records of the 2010 Chilean tsunami at Gisborne tide gauge and at the nearby deep-ocean assessment and reporting of tsunamis (DART) station 54401. The suggested technique is also demonstrated by hindcasting the 2011 Tohoku tsunami and 2012 Haida Gwaii tsunami at Monterey Bay, CA, using an offshore record of each tsunami at DART station 46411.  相似文献   

17.
Power  William  Tolkova  Elena 《Ocean Dynamics》2013,63(11):1213-1232

The response/transfer function of a coastal site to a remote open-ocean point is introduced, with the intent to directly convert open-ocean measurements into the wave time history at the site. We show that the tsunami wave at the site can be predicted as the wave is measured in the open ocean as far as 1,000+ km away from the site, with a straightforward computation which can be performed almost instantaneously. The suggested formalism is demonstrated for the purpose of tsunami forecasting in Poverty Bay, in the Gisborne region of New Zealand. Directional sensitivity of the site response due to different conditions for the excitation of the shelf and the bay’s normal modes is investigated and used to explain tsunami observations. The suggested response function formalism is validated with available records of the 2010 Chilean tsunami at Gisborne tide gauge and at the nearby deep-ocean assessment and reporting of tsunamis (DART) station 54401. The suggested technique is also demonstrated by hindcasting the 2011 Tohoku tsunami and 2012 Haida Gwaii tsunami at Monterey Bay, CA, using an offshore record of each tsunami at DART station 46411.

  相似文献   

18.
On November 15, 2006, Crescent City in Del Norte County, California was hit by a tsunami generated by a M w 8.3 earthquake in the central Kuril Islands. Strong currents that persisted over an eight-hour period damaged floating docks and several boats and caused an estimated $9.2 million in losses. Initial tsunami alert bulletins issued by the West Coast Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska were cancelled about three and a half hours after the earthquake, nearly five hours before the first surges reached Crescent City. The largest amplitude wave, 1.76-meter peak to trough, was the sixth cycle and arrived over two hours after the first wave. Strong currents estimated at over 10 knots, damaged or destroyed three docks and caused cracks in most of the remaining docks. As a result of the November 15 event, WCATWC changed the definition of Advisory from a region-wide alert bulletin meaning that a potential tsunami is 6 hours or further away to a localized alert that tsunami water heights may approach warning- level thresholds in specific, vulnerable locations like Crescent City. On January 13, 2007 a similar Kuril event occurred and hourly conferences between the warning center and regional weather forecasts were held with a considerable improvement in the flow of information to local coastal jurisdictions. The event highlighted the vulnerability of harbors from a relatively modest tsunami and underscored the need to improve public education regarding the duration of the tsunami hazards, improve dialog between tsunami warning centers and local jurisdictions, and better understand the currents produced by tsunamis in harbors.  相似文献   

19.
The major (M w = 8.8) Chilean earthquake of 27 February 2010 generated a trans-oceanic tsunami that was observed throughout the Pacific Ocean. Waves associated with this event had features similar to those of the 1960 tsunami generated in the same region by the Great (M w = 9.5) 1960 Chilean Earthquake. Both tsunamis were clearly observed on the coast of British Columbia. The 1960 tsunami was measured by 17 analog pen-and-paper tide gauges, while the 2010 tsunami was measured by 11 modern digital coastal tide gauges, four NEPTUNE-Canada bottom pressure recorders located offshore from southern Vancouver Island, and two nearby open-ocean DART stations. The 2010 records were augmented by data from seven NOAA tide gauges on the coast of Washington State. This study examines the principal characteristics of the waves from the 2010 event (height, period, duration, and arrival and travel times) and compares these properties for the west coast of Canada with corresponding properties of the 1960 tsunami. Results show that the 2010 waves were approximately 3.5 times smaller than the 1960 waves and reached the British Columbia coast 1 h earlier. The maximum 2010 wave heights were observed at Port Alberni (98.4 cm) and Winter Harbour (68.3 cm); the observed periods ranged from 12 min at Port Hardy to 110–120 min at Prince Rupert and Port Alberni and 150 min at Bamfield. The open-ocean records had maximum wave heights of 6–11 cm and typical periods of 7 and 15 min. Coastal and open-ocean tsunami records revealed persistent oscillations that “rang” for 3–4 days. Tsunami energy occupied a broad band of periods from 3 to 300 min. Estimation of the inverse celerity vectors from cross-correlation analysis of the deep-sea tsunami records shows that the tsunami waves underwent refraction as they approached the coast of Vancouver Island with the direction of the incoming waves changing from an initial direction of 340° True to a direction of 15° True for the second train of waves that arrived 7 h later after possible reflection from the Marquesas and Hawaiian islands.  相似文献   

20.
本文用地震波前成像和射线数分布分析法对上世纪80年代在琼东北及雷州半岛地区完成的三条宽角反射/折射地震剖面的Pg波资料进行了处理,得到了三条测线下方的上地壳顶部P波速度结构及基底的空间展布形态特征.结果显示研究区域表现出较复杂的上部地壳结构特征,浅部P波速度结构的高、低速区域分别与地质构造上的一些凸起和凹陷相对应,用射线数分布分析法所显示的基底结构及形态特征与地震剖面穿过区域的地质构造有较好的对应关系,测线穿过的一些断裂下方P波速度结构表现为强烈的横向非均匀性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号