首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The tsunami generated by the 2011 Tohoku Earthquake (M w = 9.0) reached maximum heights of about 5 m along the coast of the Kuril Islands. The most essential feature of this event was sea ice about 0.5 m thick moved by the ocean water. The tsunami did not cause any essential damage on the Kuril Islands, but significantly affected coastal zones and produced interesting effects. The problem of a tsunami accompanied by marine ice is discussed and illustrated with photos.  相似文献   

4.
Kozo  Uto Yoshmjki  Tatsumi 《Island Arc》1996,5(3):250-261
Abstract Quaternary volcanism of the Japanese Islands is examined from the perspective of experimental petrology, geographic distribution of volcanoes and spatial geochemical variations. The dehydration of amphibole and chlorite at a 110 km depth and of phlogopite at ∼180 km in the downdragged hydrous mantle layer would result in the occurrence of two volcanic chains parallel to the trench axis. Long-term subduction of the old Pacific plate and recent subduction of the young Philippine Sea plate beneath East Japan and West Japan volcanic belts respectively, would be critical for the significant difference in intensity, style and geochemistry of Quaternary volcanism between the two volcanic belts. The geochemistry of volcanic rocks in Northeast Japan and those in the Ryukyu arc is typical of 'island-arcs' having low LIL/HFS element ratios, while alkalic basalts along the Japan Sea coast side in Southwest Japan have high LIL/HFS ratios similar to intra-continental or oceanic island basalts. Across-arc variations in eruptive volume and distributional density of volcanoes and in geochemistry are documented in Northeast Japan and are well explained by the decreasing degrees of partial melting toward back-arc side, and the difference in geochemistry of fluids supplied by the downdragged hydrous layer.  相似文献   

5.
On March 11, 2011 at 5:46:23 UTC (March 10 11:46:23 PM Galapagos Local Time), the Mw 9.0 Great East Japan Earthquake occurred near the Tohoku region off the east coast of Japan, spawning a Pacific-wide tsunami. Approximately 12,000 km away, the Galapagos Islands experienced moderate tsunami impacts, including flooding, structural damage, and strong currents. In this paper, we present observations and measurements of the tsunami effects in the Galapagos, focusing on the four largest islands in the archipelago; (from west to east) Isabela, Santiagio, Santa Cruz, and San Cristobal. Access to the tsunami affected areas was one of the largest challenges of the field survey. Aside from approximately ten sandy beaches open to tourists, all other shoreline locations are restricted to anyone without a research permit; open cooperation with the Galapagos National Park provided the survey team complete access to the Islands coastlines. Survey locations were guided by numerical simulations of the tsunami performed prior to the field work. This numerical guidance accurately predicted the regions of highest impact, as well as regions of relatively low impact. Tide-corrected maximum tsunami heights were generally in the range of 3–4 m with the highest runup of 6 m measured in a small pocket beach on Isla Isabela. Puerto Ayora, on Santa Cruz Island, the largest harbor in the Galapagos experienced significant flooding and damage to structures located at the shoreline. A current meter moored inside the harbor recorded relatively weak tsunami currents of less than 0.3 m/s (0.6 knot) during the event. Comparisons with detailed numerical simulations suggest that these low current speed observations are most likely the result of data averaging at 20-min intervals and that maximum instantaneous current speeds were considerably larger. Currents in the Canal de Itabaca, a natural waterway between Santa Cruz Island and a smaller island offshore, were strong enough to displace multiple 5.5-ton navigation buoys. Numerical simulations indicate that currents in the Canal de Itabaca exceeded 4 m/s (~8 knots), a very large flow speed for a navigational waterway.  相似文献   

6.
Regional metamorphic belts of the Japanese Islands   总被引:1,自引:0,他引:1  
Takashi  Nakajima 《Island Arc》1997,6(1):69-90
Abstract An overview of the regional metamorphic belts of Japan is given in the context of the tectonic evolution of the Japanese Islands. The Japanese Islands were situated on an active margin of the Eurasian continent or its constituent landmass before their assembly during the Phanerozoic. The Japanese Islands are composed mainly of metamorphosed and unmetamorphosed accretionary complexes, granitoids and their effusive equivalents that were formed by the Cordilleran-type orogeny. The metamorphic belts are regarded essentially as a deep-seated portion of an accretionary complex. In spite of continuous subduction of oceanic plates beneath the continents, these orogenic rocks were formed quite episodically, as evidenced by discontinuous matrix ages of the accretionary complexes and a striking concentration of isotopic ages of the granitoids. A systematic along-arc age shift of Cretaceous large-scaled granitic magmatism and regional metamorphism suggests a tectonic control such as ridge subduction, which triggered the episodic orogeny. A tectonic model based on the paired metamorphic belts, combined with the non-steady tectonic control, works well to explain this magmatism and metamorphism in a single arc-trench system as a continental margin process. However, the juxtapositional process of the paired metamorphic belts is still a problem. Two possible cases, namely transcurrent displacement and back-arc overthrusting are discussed.  相似文献   

7.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

8.
9.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

10.
We calculated statistical average of thermal data to speculate regional thermal structure of the forearc area of the Japanese Islands. The three thermal statistical averages show a difference of a high thermal regime in the western part of forearc inner zone and a low in the Kanto forearc outer zone. The Kanto zone marks 18 K km−1 for mean geothermal gradient, 44 mW m−2 for mean heat flow, while the western inner zone shows 27 K km−1 for mean geothermal gradient, 63 mW m−2 for mean heat flow. The geothermal gradients of the Nobi Plain and the Osaka Plain in the western inner zone are 29 and 36 K km−1, respectively, while the value of the Kanto Plain in the Kanto zone is 21 K km−1. Taking account of the effect of accumulation of sediments, we see the difference in the thermal regime between the plains and conclude that the difference is significant. Heat flux in the crust depends on the volume of granite rich in radioactive elements. There are few granitic rocks in the Kanto zone, while granitic rocks are dominant in the western inner zone. The heat flow of 20 mW m−2 is attributed to the granitic rocks of about 8 km in thickness. There are two oceanic plate subductions of the Pacific plate and the Philippine Sea plate under the Kanto zone, while only the Philippine Sea plate has been subducting under the western inner zone. The model simulation based on thermal and subduction model shows a heat flow ranging 50-60 mW m−2 in the southwest Japan forarc area and a low value of about 20 mW m−2 in the northeast Japan forearc area. The heat flux from the cooling oceanic lithosphere depends on the age of plate. The Shikoku Basin, a part of the Philippine Sea plate, off the western inner zone is 15-30 Ma, while the Pacific plate off the Kanto zone is 122-132 Ma. Theoretically, heat flux values of 15 and 50 Ma oceanic plates range 60-120 mW m−2 and those of 122-132 Ma could be about 10 mW m−2. If the heat flux contribution from the Philippine Sea plate under the Kanto zone is smaller than the plate under the western inner zone, there could be a thermal regime difference in order of several tens of mW m−2. Conclusively, the cause of the difference of heat flux could be the uneven granitic rocks distribution and/or the difference of heat flux between the two subducting plate.  相似文献   

11.
Collision orogeny at arc-arc junctions in the Japanese Islands   总被引:1,自引:0,他引:1  
Gaku  Kimura 《Island Arc》1996,5(3):262-275
Abstract In the Japanese Islands, collision tectonics are operating at arc-arc junctions in three regions: Hokkaido, Central Japan and Kyushu. Hokkaido is situated at the junction of the Kuril and Northeast Japan Arcs. The Kuril fore arc sliver collides with the Northeast Japan Arc, and the lower crust of the Kuril Arc thrusts upon the fore arc of the Northeast Japan Arc in Hokkaido. Outcrops of the lower crust are observed in the Hidaka Mountains in the fore arc of the junction area. Central Japan is in the juncture area among the Northeast Japan, Izu-Bonin, and Southwest Japan Arcs. The Izu-Bonin arc is colliding against the Honshu mainland, which has been bent by the collision. Kyushu is a juvenile collision area between the Southwest Japan and Ryukyu Arcs. The fore arc of the Southwest Japan Arc is starting to underthrust beneath the Kyushu islands along the Bungo Strait, where shallow seismicity within the crust is active in terms of the collision. Collision tectonics are observed at most of the arc-arc junctions in the circum-Pacific orogenic belts and may be an important process contributing to the relatively rapid growth of new continental crust in subduction zones.  相似文献   

12.
The relations of river morphology and tsunami propagation in rivers were studied at several rivers in the Tohoku region during The Great Chilean Tsunami of 2010 and The Great East Japan Tsunami of 2011. It was found that river mouth morphological features play an important role in the intrusion of low magnitude tsunamis in which the geological and geographical conditions are an important factor. Nevertheless, the effects of these features were not found in the case of an extreme tsunami wave. As the wave enters the river, the propagation depends on other factors. It was found that the intrusion distance correlates well to the riverbed slope. The measurements of water level and riverbed slope were analyzed to propose an empirical method for estimating the damping coefficient for the tsunami propagation in rivers based on the tsunami of 2011. The proposed empirical method was used to approximate the length of the tsunami intrusion into a river by assuming that the furthest distance is given for the ratio of local tsunami wave height to the tsunami wave height at the river entrance of 0.05 (5 %). The estimated intrusion length from the proposed method in this study shows a good comparison with measurement data.  相似文献   

13.
The near-field expression of the tsunami produced by the 15 November 2006 Kuril earthquake (Mw 8.1–8.4) in the middle Kuril Islands, Russia, including runup of up to 20 m, remained unknown until we conducted a post-tsunami survey in the summer of 2007. Because the earthquake occurred between summer field expeditions in 2006 and 2007, we have observations, topographic profiles, and photographs from three months before and nine months after the tsunami. We thoroughly surveyed portions of the islands of Simushir and Matua, and also did surveys on parts of Ketoi, Yankicha, Ryponkicha, and Rasshua. Tsunami runup in the near-field of the middle Kuril Islands, over a distance of about 200 km, averaged 10 m over 130 locations surveyed and was typically between 5 and 15 m. Local topography strongly affected inundation and somewhat affected runup. Higher runup generally occurred along steep, protruding headlands, whereas longer inundation distances occurred on lower, flatter coastal plains. Sediment transport was ubiquitous where sediment was available—deposit grain size was typically sand, but ranged from mud to large boulders. Wherever there were sandy beaches, a more or less continuous sand sheet was present on the coastal plain. Erosion was extensive, often more extensive than deposition in both space and volume, especially in areas with runup of more than 10 m. The tsunami eroded the beach landward, stripped vegetation, created scours and trim lines, cut through ridges, and plucked rocks out of the coastal plain.  相似文献   

14.
On 11 March 2011 a subsea earthquake off the north-eastern coast of Honshu Island, Japan generated a huge tsunami which was felt throughout the Pacific. At the opposite end of the Pacific Ocean, on the south-east coast of Australia, multiple reflections, scatterings and alternate pathways lead to a prolonged and complicated response. This response was largely unaltered in crossing the continental shelf but was then transformed by bay resonances and admittances. These effects are described using data from tide recorders sparsely spread over 1,000 km of the coast. Some new adaptations and applications of time-series analysis are applied to separate tsunami waves that have followed different pathways but contain the same spectral components. The possible types of harbour response are classified and illustrated. Despite its small height in this region, the tsunami put several swimmers at serious risk and generated strong harbour oscillations, which should be considered when generating future warnings.  相似文献   

15.
16.
The tsunamigenic earthquake (Mw?=?8.1) that occurred on 29 September 2009 at 17:48 UTC offshore of the Samoa archipelago east of the Tonga trench represents an example of the so-called ??outer-rise?? earthquakes. The areas most affected were the south coasts of Western and American Samoa, where almost 200 people were killed and run-up heights were measured in excess of 5?m at several locations along the coast. Moreover, tide gauge records showed a maximum peak-to-peak height of about 3.5?m near Pago Pago (American Samoa) and of 1.5?m offshore of Apia (Western Samoa). In this work, different fault models based on the focal mechanism solutions proposed by Global CMT and by USGS immediately after the 2009 Samoan earthquake are tested by comparing the near-field recorded signals (three offshore DART buoys and two coastal tide gauges) and the synthetic signals provided by the numerical simulations. The analysis points out that there are lights and shadows, in the sense that none of the computed tsunamis agrees satisfactorily with all the considered signals, although some of them reproduce some of the records quite well. This ??partial agreement?? and ??partial disagreement?? are analysed in the perspective of tsunami forecast and of Tsunami Early Warning System strategy.  相似文献   

17.
The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5–10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.  相似文献   

18.
Palaeozoic and early Mesozoic fish faunas of the Japanese Islands   总被引:2,自引:0,他引:2  
MASATOSHI GOTO 《Island Arc》1994,3(4):247-254
Abstract In recent years, many fish teeth and scales have been found from the Palaeozoic and Mesozoic age strata of the Japanese Islands. This study is a compilation of the Japanese fish record from the Palaeozoic and early Mesozoic age deposits. Based on the published and unpublished data, the fossil fishes from the Palaeozoic and Early Mesozoic of Japan can be classified into 27 genera and 33 species, that is, one species of Devonian placoderms, 19 species of Permian to Jurassic elasmobranchs, three species of Permian cochliodonts, seven species of Carboniferous to Permian petalodonts, and three species of Triassic to Jurassic osteichthyans.  相似文献   

19.
To provide better access to thermochronological data and understand the long‐term denudation history of the Japanese Islands, we compiled a low‐temperature thermochronological dataset of fission‐track (FT) and (U–Th–Sm)/He (He) ages for apatite and zircon in bedrocks. These thermochronometric ages are compiled from 90 literature sources and 1,096 localities, and include 418 apatite FT ages, 851 zircon FT ages, 42 apatite He ages, and 30 zircon He ages. Many FT ages have been reported previously; however, the number of He ages is limited in the Japanese Islands. The compiled data are spatially biased; for instance, more data are reported for the Chubu and Kinki districts and the Pacific coast of the Shikoku Island, whereas less data were available for the Tohoku and Chugoku districts. For better understanding arc‐scale uplift‐denudation history, further thermochronological research in the lesser‐studied regions and more He thermochronometric measurements are desired. This compilation will be updated and provided on the website of the Fission‐Track Research Group in Japan ( http://ftrgj.org/index.html ).  相似文献   

20.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号