首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss computational engineering and science (CES) methodologies and tools applicable to a variety of subsurface models and their couplings. First we overview both basic and widely recognized multiphase and multicomponent models. In the CES methodologies area we focus on accurate and robust numerical algorithms and linear and nonlinear solvers with parallel scalability. In the CES tools area, we discuss a few representative programming tools and technologies. We present several simulation examples which reflect the experiences of the research group at the Center for Subsurface Modeling at The University of Texas at Austin.  相似文献   

2.
Simulating radiation transport of neutral particles (neutrons and γ‐ray photons) within subsurface formations has been an area of research in the nuclear well‐logging community since the 1960s, with many researchers exploiting existing computational tools already available within the nuclear reactor community. Deterministic codes became a popular tool, with the radiation transport equation being solved using a discretization of phase‐space of the problem (energy, angle, space and time). The energy discretization in such codes is based on the multigroup approximation, or equivalently the discrete finite‐difference energy approximation. One of the uncertainties, therefore, of simulating radiation transport problems, has become the multigroup energy structure. The nuclear reactor community has tackled the problem by optimizing existing nuclear cross‐sectional libraries using a variety of group‐collapsing codes, whilst the nuclear well‐logging community has relied, until now, on libraries used in the nuclear reactor community. However, although the utilization of such libraries has been extremely useful in the past, it has also become clear that a larger number of energy groups were available than was necessary for the well‐logging problems. It was obvious, therefore, that a multigroup energy structure specific to the needs of the nuclear well‐logging community needed to be established. This would have the benefit of reducing computational time (the ultimate aim of this work) for both the stochastic and deterministic calculations since computational time increases with the number of energy groups. We, therefore, present in this study two methodologies that enable the optimization of any multigroup neutron–γ energy structure. Although we test our theoretical approaches on nuclear well‐logging synthetic data, the methodologies can be applied to other radiation transport problems that use the multigroup energy approximation. The first approach considers the effect of collapsing the neutron groups by solving the forward transport problem directly using the deterministic code EVENT, and obtaining neutron and γ‐ray fluxes deterministically for the different group‐collapsing options. The best collapsing option is chosen as the one which minimizes the effect on the γ‐ray spectrum. During this methodology, parallel processing is implemented to reduce computational times. The second approach uses the uncollapsed output from neural network simulations in order to estimate the new, collapsed fluxes for the different collapsing cases. Subsequently, an inversion technique is used which calculates the properties of the subsurface, based on the collapsed fluxes. The best collapsing option is chosen as the one that predicts the subsurface properties with a minimal error. The fundamental difference between the two methodologies relates to their effect on the generated γ‐rays. The first methodology takes the generation of γ‐rays fully into account by solving the transport equation directly. The second methodology assumes that the reduction of the neutron groups has no effect on the γ‐ray fluxes. It does, however, utilize an inversion scheme to predict the subsurface properties reliably, and it looks at the effect of collapsing the neutron groups on these predictions. Although the second procedure is favoured because of (a) the speed with which a solution can be obtained and (b) the application of an inversion scheme, its results need to be validated against a physically more stringent methodology. A comparison of the two methodologies is therefore given.  相似文献   

3.
This paper presents a comparison between subsurface impedance models derived from different deterministic and geostatistical seismic inversion methodologies applied to a challenging synthetic dataset. Geostatistical seismic inversion methodologies nowadays are common place in both industry and academia, contrasting with traditional deterministic seismic inversion methodologies that are becoming less used as part of the geo‐modelling workflow. While the first set of techniques allows the simultaneous inference of the best‐fit inverse model along with the spatial uncertainty of the subsurface elastic property of interest, the second family of inverse methodology has proven results in correctly predicting the subsurface elastic properties of interest with comparatively less computational cost. We present herein the results of a benchmark study performed over a realistic three‐dimensional non‐stationary synthetic dataset in order to assess the performance and convergence of different deterministic and geostatistical seismic inverse methodologies. We also compare and discuss the impact of the inversion parameterisation over the exploration of the model parameter space. The results show that the chosen seismic inversion methodology should always be dependent on the type and quantity of the available data, both seismic and well‐log, and the complexity of the geological environment versus the assumptions behind each inversion technique. The assessment of the model parameter space shows that the initial guess of traditional deterministic seismic inversion methodologies is of high importance since it will determine the location of the best‐fit inverse solution.  相似文献   

4.
随机地震反演关键参数优选和效果分析(英文)   总被引:2,自引:0,他引:2  
随机地震反演技术是将地质统计理论和地震反演相结合的反演方法,它将地震资料、测井资料和地质统计学信息融合为地下模型的后验概率分布,利用马尔科夫链蒙特卡洛(MCMC)方法对该后验概率分布采样,通过综合分析多个采样结果来研究后验概率分布的性质,进而认识地下情况。本文首先介绍了随机地震反演的原理,然后对影响随机地震反演效果的四个关键参数,即地震资料信噪比、变差函数、后验概率分布的样本个数和井网密度进行分析并给出其优化原则。资料分析表明地震资料信噪比控制地震资料和地质统计规律对反演结果的约束程度,变差函数影响反演结果的平滑程度,后验概率分布的样本个数决定样本统计特征的可靠性,而参与反演的井网密度则影响反演的不确定性。最后通过对比试验工区随机地震反演和基于模型的确定性地震反演结果,指出随机地震反演可以给出更符合地下实际情况的模型。  相似文献   

5.
Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten–Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.  相似文献   

6.
Wide-azimuth seismic data can be used to derive anisotropic parameters on the subsurface by observing variation in subsurface seismic response along different azimuths. Layer-based high-resolution estimates of components of the subsurface anisotropic elastic tensor can be reconstructed by using wide-azimuth P-wave data by combining the kinematic information derived from anisotropic velocity analysis with dynamic information obtained from amplitude versus angle and azimuth analysis of wide-azimuth seismic data. Interval P-impedance, S-impedance and anisotropic parameters associated with anisotropic fracture media are being reconstructed using linearized analysis assuming horizontal transverse anisotropy symmetry. In this paper it is shown how additional assumptions, such as the rock model, can be used to reduce the degrees of freedom in the estimation problem and recover all five anisotropic parameters. Because the use of a rock model is needed, the derived elastic parameters are consistent with the rock model and are used to infer fractured rock properties using stochastic rock physics inversion. The inversion is based on stochastic rock physics modelling and maximum a posteriori estimate of both porosity and crack density parameters associated with the observed elastic parameters derived from both velocity and amplitude versus angle and azimuth analysis. While the focus of this study is on the use of P-wave reflection data, we also show how additional information such as shear wave splitting and/or anisotropic well log data can reduce the assumptions needed to derive elastic parameter and rock properties.  相似文献   

7.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

8.
In this paper we present a stochastic model reduction method for efficiently solving nonlinear unconfined flow problems in heterogeneous random porous media. The input random fields of flow model are parameterized in a stochastic space for simulation. This often results in high stochastic dimensionality due to small correlation length of the covariance functions of the input fields. To efficiently treat the high-dimensional stochastic problem, we extend a recently proposed hybrid high-dimensional model representation (HDMR) technique to high-dimensional problems with multiple random input fields and integrate it with a sparse grid stochastic collocation method (SGSCM). Hybrid HDMR can decompose the high-dimensional model into a moderate M-dimensional model and a few one-dimensional models. The moderate dimensional model only depends on the most M important random dimensions, which are identified from the full stochastic space by sensitivity analysis. To extend the hybrid HDMR, we consider two different criteria for sensitivity test. Each of the derived low-dimensional stochastic models is solved by the SGSCM. This leads to a set of uncoupled deterministic problems at the collocation points, which can be solved by a deterministic solver. To demonstrate the efficiency and accuracy of the proposed method, a few numerical experiments are carried out for the unconfined flow problems in heterogeneous porous media with different correlation lengths. The results show that a good trade-off between computational complexity and approximation accuracy can be achieved for stochastic unconfined flow problems by selecting a suitable number of the most important dimensions in the M-dimensional model of hybrid HDMR.  相似文献   

9.
Direct current resistivity surveys and shallow temperature measurements were carried out for geothermal exploration in a part of Parvati valley, goethermal field, Himachal Pradesh, India. At a few places, the Schlumberger soundings pointed to the presence of a relatively low-resistivity shallow layer, which probably represents fractured and jointed quartzite, saturated with hot/cold water. Wenner resistivity profiles indicate the presence of some possible shallow subsurface lateral hot water channels across the valley at Manikaran. Shallow temperature measurements show a good subsurface thermal anomaly near the confluence of the rivers Brahmaganga and Parvati. The results of the survey, together with other available geodata, suggest that an anomalous heat source does not lie beneath the study area.It is postulated that the meteoric water, originating at high elevations after heating as a result of circulation at depth, emerges at the surface in the Parvati valley as hot springs, after mixing in various proportions with near surface cold waters.  相似文献   

10.
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.  相似文献   

11.
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.  相似文献   

12.
13.
The design and the management of pump-and-treat (PAT) remediation systems for contaminated aquifers under uncertain hydrogeological settings and parameters often involve decisions that trade off cost optimality against reliability. Both design objectives can be improved by planning site characterization programs that reduce subsurface parameter uncertainty. However, the cost for subsurface investigation often weighs heavily upon the budget of the remedial action and must thus be taken into account in the trade-off analysis. In this paper, we develop a stochastic data-worth framework with the purpose of estimating the economic opportunity of subsurface investigation programs. Since the spatial distribution of hydraulic conductivity is most often the major source of uncertainty, we focus on the direct sampling of hydraulic conductivity at prescribed locations of the aquifer. The data worth of hydraulic conductivity measurements is estimated from the reduction of the overall management cost ensuing from the reduction in parameter uncertainty obtained from sampling. The overall cost is estimated as the expected value of the cost of installing and operating the PAT system plus penalties incurred due to violations of cleanup goals and constraints. The crucial point of the data-worth framework is represented by the so-called pre-posterior analysis. Here, the tradeoff between decreasing overall costs and increasing site-investigation budgets is assessed to determine a management strategy proposed on the basis of the information available at the start of remediation. The goal of the pre-posterior analysis is to indicate whether the proposed management strategy should be implemented as is, or re-designed on the basis of additional data collected with a particular site-investigation program. The study indicates that the value of information is ultimately related to the estimates of cleanup target violations and decision makers’ degree of risk-aversion.  相似文献   

14.
Electrical geophysical methods, including electrical resistivity, time‐domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time‐lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time‐lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Stochastic analysis is commonly used to address uncertainty in the modeling of flow and transport in porous media. In the stochastic approach, the properties of porous media are treated as random functions with statistics obtained from field measurements. Several studies indicate that hydrological properties depend on the scale of measurements or support scales, but most stochastic analysis does not address the effects of support scale on stochastic predictions of subsurface processes. In this work we propose a new approach to study the scale dependence of stochastic predictions. We present a stochastic analysis of immiscible fluid–fluid displacement in randomly heterogeneous porous media. While existing solutions are applicable only to systems in which the viscosity of one phase is negligible compare with the viscosity of the other (water–air systems for example), our solutions can be applied to the immiscible displacement of fluids having arbitrarily viscosities such as NAPL–water and water–oil. Treating intrinsic permeability as a random field with statistics dependant on the permeability support scale (scale of measurements) we obtained, for one-dimensional systems, analytical solutions for the first moments characterizing unbiased predictions (estimates) of system variables, such as the pressure and fluid–fluid interface position, and we also obtained second moments, which characterize the uncertainties associated with such predictions. Next we obtained empirically scale dependent exponential correlation function of the intrinsic permeability that allowed us to study solutions of stochastic equations as a function of the support scale. We found that the first and second moments converge to asymptotic values as the support scale decreases. In our examples, the statistical moments reached asymptotic values for support scale that were approximately 1/10000 of the flow domain size. We show that analytical moment solutions compare well with the results of Monte Carlo simulations for moderately heterogeneous porous media, and that they can be used to study the effects of heterogeneity on the dynamics and stability of immiscible flow.  相似文献   

16.
利用支持向量分类(SVC)估算断层深度和特征选择(英文)   总被引:1,自引:0,他引:1  
地下断层深度的估算是重力解释难题之一,我们试利用支持向量分类(SVC)法进行计算。使用正演和非线性反演技术,通过相关误错使检测地下断层深度成为可能。但必要有一个深度初始猜测值,而且这猜测值通常不是由重力资料得。本文我们介绍以SVC作为利用重力数据估算断层深度的一种手段。在这项研究中,我们假设一种地下断层深度可归为一种类型,SVC作为一个分类算法。为了有效地利用此SVC算法,我们基于一个正确的特征选择算法去选择正确的深度特征。本次研究中我们建立了一套基于不同深度地下断层的合成重力剖面训练集,用以训练用于计算实际的地下断层深度的SVC代码。然后用其它合成重力剖面训练集测试我们训练的SVC代码,同时也用实际资料验证了我们的训练SVC代码。  相似文献   

17.
Based on the stochastic and phenomenological aspects of hydrological processes, a conceptually based stochastic point process (SPP) model for daily stream‐flow generation is proposed in this paper. In which, storms are defined by a stochastic point process with marked values. All the random variables defining the process are assumed to be mutually independent, which constitutes a compound Poisson point process. The direct surface runoff is regarded as occurring from storage in a cascade of surface linear reservoirs and is responsible for the short‐term variation of the daily stream flows. The baseflow component is considered as coming from subsurface/groundwater storage and is responsible for the long‐term persistence of the storm time‐series. This type of model is proposed as a more realistic model of daily stream flow than models based on pure stochastic processes. Studies on the instantaneous unit hydrograph and the mechanism of baseflow could thereby provide some parameters for this model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Water samples from both hot and artesian springs in Kuantzeling in west-central Taiwan have been collected on a regular basis from July 15, 1999 to the end of August 2001 to measure cation and anion concentrations as a tool to detect major earthquake precursors. The data identify chloride and sulfate ion anomalies few days prior to major quakes and lasting a few days afterward. These anomalies are characterized by increases in Cl- concentrations from 34.9% to 41.2% and 71.5% to 138.1% as well as increases in SO42- concentrations from 232.7% to 276.8% and 100.0% to 155.1% above the means in both hot and artesian springs. The occurrence of these anomalies is probably explained first as stress/strain-induced pressure changes in the subsurface water systems which then generate precursory limited geochemical discharges at the levels of subsurface reservoirs. Therefore, finally leading to the mixing of previously separated subsurface water bodies occurs. This suggests that the hot and artesian springs in the Kuantzeling area are possible ideal sites for recording strain changes serving well as earthquake precursors.  相似文献   

19.

本文基于椭圆展开成像原理, 引入地震波入射角和地层倾角两个参数推导出了角变换零偏移距成像方法, 该方法只使用两个角度实现零偏移距成像, 但成像存在强干涉噪声问题.针对该问题, 并从实际生产应用方面考虑, 推导出了分别使用地震波入射角、地层倾角、速度和地层倾角进行成像的三种改进方法, 通过对比分析, 优选实现了含有速度和地层倾角的改进的角变换零偏移距成像方法, 通过数学分析、数值模型和实际资料处理证实了新方法的有效性: 新方法没有地下反射层为水平的前提假设条件, 地下反射层可以倾斜或弯曲; 均匀介质条件下新方法可以求取真实的地下速度和地层倾角, 实现真正的零偏移距成像处理, 这和CMP类方法有本质区别; 对复杂地下介质, 新方法也可以实现较好的零偏移距成像处理.

  相似文献   

20.
We use Legendre polynomials to reparameterize geophysical inversions solved through a particle swarm optimization. The subsurface model is expanded into series of Legendre polynomials that are used as basis functions. In this framework, the unknown parameters become the series of expansion coefficients associated with each polynomial. The aim of this peculiar parameterization is threefold: efficiently decreasing the number of unknowns, inherently imposing a 1D spatial correlation to the recovered subsurface model and searching for maximally decoupled parameters. The proposed approach is applied to two highly non-linear geophysical optimization problems: seismic-petrophysical inversion and 1D elastic full-waveform inversion. In this work, with the aim to maintain the discussion at a simple level, we limit the attention to synthetic seismic data. This strategy allows us to draw general conclusions about the suitability of this peculiar parameterization for solving geophysical problems. The results demonstrate that the proposed approach ensures fast convergence rates together with accurate and stable final model predictions. In particular, the proposed parameterization reveals to be effective in reducing the ill conditioning of the optimization problem and in circumventing the so-called curse-of-dimensionality issue. We also demonstrate that the implemented algorithm greatly outperforms the outcomes of the more standard approach to global inversion in which each subsurface parameter is considered as an independent unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号