共查询到20条相似文献,搜索用时 15 毫秒
1.
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time–distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20?Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented. 相似文献
2.
The purpose of deep-focusing time–distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time–distance helioseismology. 相似文献
3.
The immense volume of data generated by the suite of instruments on the Solar Dynamics Observatory (SDO) requires new tools for efficient identifying and accessing data that is most relevant for research. We have developed the Heliophysics Events Knowledgebase (HEK) to fill this need. The HEK system combines automated data mining using feature-detection methods and high-performance visualization systems for data markup. In addition, web services and clients are provided for searching the resulting metadata, reviewing results, and efficiently accessing the data. We review these components and present examples of their use with SDO data. 相似文献
4.
Achieving subarcsecond co-registration across varying time-lines of multi-wavelength and instrument images is difficult and requires an accurate characterization of the instrument pointing jitter. We investigated the internal pointing errors on daily and yearly time-scales that occur across the Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI). Using cross-correlation techniques on the AIA 1700 Å passband and the HMI line-of-sight magnetograms from three years of observational image pairs at approximately three-day intervals, internal pointing errors were quantified. Pointing variations of ±?0.26″ (jitter-limited) and ±?0.50″ in the solar East–West ( x) and North–South ( y) directions, respectively, were measured. AIA observations of the Venus transit in June 2012 were used to measure existing coalignment offsets in all passbands. We found that the AIA passband pointing variations are 〈Δ X CO〉=1.10″±1.41″ and 〈Δ Y CO〉=1.25″±1.24″ when aligned to the HMI nominal image center, referred to here as the CutOut technique. Minimal long-term pointing variations found between limb and correlation derived pointings provide evidence that the image-center positions provided by the instrument teams achieve single-pixel accuracy on time scales shorter than their characterization. However, daily AIA passband pointing variations of ??1.18″ indicate that autonomous subarcsecond co-registration is not fully achieved yet. 相似文献
5.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during
1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys.
23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res.
86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga ( Geophys. Res. Lett.
95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were
82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average
duration, Δ t, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δ t=15 h); (2) the average
(minimum B
z
found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average
Dst min (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s −1 for MCs and 413 km s −1 for MCLs; (5) the average thermal speed is 24.6 km s −1 for MCs and 27.7 km s −1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density
is 9.4 cm −3 for MCs and 6.3 cm −3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms.
The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs,
are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a
MC is an important interplanetary structure with respect to geomagnetic storms is not new ( e.g., Zhang and Burlaga, J. Geophys. Res.
93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003). 相似文献
6.
The differential rotation of compact magnetic elements during activity cycles 20 and 21 (1966 – 1986) is studied by using
solar synoptic charts. For each hemisphere the compact magnetic elements with the polarity of the circumpolar magnetic field
have larger rotation rates than the elements with the opposite polarity. This difference in rotation rates is present during
the whole cycle except during the polarity reversal of the circumpolar field. 相似文献
7.
We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments?? working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data. 相似文献
8.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models. We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as $$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$ (1) where \(N_{\text{cor}}(r)\) is in units of cm ?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength ( \(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively. 相似文献
9.
For solar activity Cycles 20 and 21 (1966??C?1985) the solar differential rotation has been investigated using H?? filaments and relatively small-scale long-lived magnetic features with negative and positive polarities. We used annual averaged angular velocities of quiescent H?? filaments from H?? photoheliograms of the Abastumani Astrophysical Observatory film collection and selected long-lived magnetic features from the McIntosh atlas (McIntosh, Willock, and Thompson, Atlas of Stackplots, NGDC, 1991). We have determined coefficients of Faye??s formulas for H?? filaments as well as for long-lived magnetic features and have found that for Solar Cycles 20 and 21 the H?? filaments have lower rotation rates and rotated more differentially than the long-lived magnetic features. 相似文献
10.
Magnetic clouds (MCs) have been identified for the period 2007??C?2009 (at/near the recent solar minimum) from Wind data, then confirmed through MC parameter fitting using a force-free model. A dramatic increase in the frequency of occurrence of these events took place from the two early years of 2007 (with five MCs) and 2008 (one MC) compared to 2009 (12 MCs). This pattern approximately mirrors the occurrence-frequency profile that was observed over a three-year interval 12 years earlier, with eight events in 1995, four in 1996, and 17 in 1997, but decreased overall by a factor of 0.62 in number. However, the average estimated axial field strength [??| B O|??] taken over all of the 18 events of 2007??C?2009 (called the ??recent period?? here) was only 11.0 nT, whereas ??| B O|?? for the 29 events of 1995??C?1997 (called the ??earlier period??) was 16.5 nT. This 33% average drop in ??| B O|?? is more or less consistent with the decreased three-year average interplanetary magnetic field intensity between these two periods, which shows a 23% drop. In the earlier period, the MCs were clearly of mixed types but predominantly of the South-to-North type, whereas those in the recent period are almost exclusively the North-to-South type; this change is consistent with global solar field changes predicted by Bothmer and Rust ( Geophys. Monogr. Ser. 99, 139, 1997). As we have argued in earlier work (Lepping and Wu, J. Geophys. Res. 112, A10103, 2007), this change should make it possible to carry out (accurate short-term) magnetic storm forecasting by predicting the latter part of an MC from the earlier part, using a good MC parameter-fitting model with real-time data from a spacecraft at L 1, for example. The recent set??s average duration is 15.2 hours, which is a 27% decrease compared to that of the earlier set, which had an average duration of 20.9 hours. In fact, all physical aspects of the recent MC set are shown to drop with respect to the earlier set; e.g., as well as the average internal magnetic field drop, the recent set had a somewhat low average speed of 379 km?s ?1 (5% drop), and the average diameter had a 24% drop. Hence, compared to the earlier set, the recent set consists of events that are smaller, slightly slower, and weaker in every respect (and fewer in number), but in a relative sense the two three-year sets have similar frequency-of-occurrence profiles. It is also interesting that the two sets have almost the same average axial inclinations, i.e., axial latitude ??31° (in GSE). These MC characteristics are compared to relevant solar features and their changes. A preliminary assessment of the statistics on possible shocks and pressure pulses upstream of these recent MCs yields the following: About 28% of the MCs, at most, had shocks, and 33% had shocks and/or pressure pulses. These are low values, since typically the percentage of cases with shocks is about 50%, and the percentage with shocks and/or pressure pulses is usually about 75%. 相似文献
11.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team. 相似文献
12.
Until recently, most of the information on particle acceleration processes in solar flares has been obtained from hard X-ray and cm-microwave observations. As a rule they provide information on electrons with energies below 300 keV. During recent years it became possible to measure the gamma-ray and millimeter radio emission with improved sensitivities. These spectral ranges carry information on much higher energy electrons. We studied the temporal and spectral behaviour of the radio burst emission at centimeter-millimeter wavelengths (8–50 GHz) by using the data from the patrol instruments of IAP (Bern University). We have analyzed more than 20 impulsive and long duration radio bursts (of 10 s to several 100 s duration).The main finding of the data analysis is the presence of spectral flattening throughout the bursts, which occurs always during the decay phase of flux peaks, at frequencies well above the spectral peak frequency and independently of burst duration. Furthermore, for some of the bursts, the flux maxima at higher frequencies are delayed. These findings can serve as evidence of the hardening of the electron spectrum at energies above some hundreds of keV during the decay phase of cm–mm flux peaks. As a most likely reason for such a hardening we consider Coulomb collisions of energetic electrons continuously injected and trapped in a flaring loop. 相似文献
13.
A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (| ?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field ( d E), and modified effective distance ( d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , | ?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions. 相似文献
14.
We analyze coronal holes present on the Sun during the extended minimum between Cycles 23 and 24, study their evolution, examine the consequences for the solar wind speed near the Earth, and compare it with the previous minimum in 1996. We identify coronal holes and determine their size and location using a combination of EUV observations from SOHO/EIT and STEREO/EUVI and magnetograms. We find that the long period of low solar activity from 2006 to 2009 was characterized by weak polar magnetic fields and polar coronal holes smaller than observed during the previous minimum. We also find that large, low-latitude coronal holes were present on the Sun until 2008 and remained important sources of recurrent high-speed solar wind streams. By the end of 2008, these low-latitude coronal holes started to close down, and finally disappeared in 2009, while smaller, mid-latitude coronal holes formed in the remnants of Cycle 24 active regions shifting the sources of the solar wind at the Earth to higher latitudes. 相似文献
15.
The dynamics of a pair of satellites similar to Enceladus–Dione is investigated with a two-degrees-of-freedom model written
in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study
the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main
possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space
is replete of secondary resonances. 相似文献
16.
The results of the first polarimetric measurements of near-Earth asteroid 2014 JO25 and comet 41P/Tuttle-Giacobini-Kresák performed on April 19, 2017, with a CCD sensor at the prime focus (f/3.85) of the 2.6-m Shajn Telescope of the Crimean Astrophysical Observatory in the R filter are reported. The degree of linear polarization of the asteroid is P = 2.69 ± 0.44% at a phase angle of 55.6°, which is typical of an S-type asteroid. Its geometric albedo is ρv ≈ 0.2. A digital filter applied to the direct image of the comet reveals a jet and a tail directed toward the Sun (PA = 45.1°) and away from it (PA = 241.2°), respectively, in the coma. The maximum degree of linear polarization in the near-nucleus region of the comet is 18% at a phase angle of 69.8°. The polarization decreases to 16.2–10.7% in coma regions with a radius of 865–4856 km. Various factors affecting the maximum degree of polarization and the polarization-degree distribution over the coma are discussed. 相似文献
19.
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds
(MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs.
Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that
the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field,
is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing
magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected
to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection
occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar
coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic
field reversal process. These results will be further constrainable with the rising phase of solar cycle 24. 相似文献
20.
The zirconium oxide (ZrO) is well known for its astrophysical importance. The radiative transition parameters that include
Franck-Condon (FC) factor, r-centroid, electronic transition moments, Einstein coefficient, band oscillator strengths, radiative
life time and effective vibrational temperature have been estimated for e
1Π– X
1Σ + and 1Σ +– X
1Σ + band systems of 90ZrO molecule for the experimentally known vibrational levels using RKR potential energy curves. A reliable numerical integration
method has been used to solve the radial Schr?dinger equation for the vibrational wave functions of upper and lower electronic
states based on the latest available spectroscopic data and known wavelengths. The estimated radiative transition parameters
are tabulated. The effective vibrational temperatures of these band systems of 90ZrO molecule are found to be below 4200 K. Hence, the radiative transition parameters help us to ascertain the presence of
90ZrO molecule in the interstellar medium, S stars and sunspots. 相似文献
|