首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A model for the inner regions of accretion flows is presented where, owing to disc instabilities, cold and dense material is clumped into deep sheets or rings. Surrounding these density enhancements is hot, tenuous gas where coronal dissipation processes occur. We expect this situation to be most relevant when the accretion rate is close to Eddington and the disc is radiation-pressure-dominated, and so may apply to narrow-line Seyfert 1 (NLS1) galaxies. In this scenario, the hard X-ray source is obscured for most observers, and so the detected X-ray emission would be dominated by reflection off the walls of the sheets. A simple Comptonization calculation shows that the large photon-indices characteristic of NLS1s would be a natural outcome of two reprocessors closely surrounding the hard X-ray source. We test this model by fitting the XMM-Newton spectrum of the NLS1 1H  0707–495  between 0.5 and 11 keV with reflection-dominated ionized disc models. A very good fit is found with three different reflectors each subject to the same  Γ=2.35  power law. An iron overabundance is still required to fit the sharp drop in the spectrum at around 7 keV. We note that even a small corrugation of the accretion disc may result in  Γ>2  and a strong reflection component in the observed spectrum. Therefore, this model may also explain the strength and the variability characteristics of the MCG–6-30-15 Fe K α line. The idea needs to be tested with further broad-band XMM-Newton observations of NLS1s.  相似文献   

3.
4.
5.
6.
We present results from spectral analysis of ASCA data on the strong Fe  ii narrow-line Seyfert 1 galaxy Mrk 507. This galaxy was found to have an exceptionally flat ROSAT spectrum among the narrow-line Seyfert 1 galaxies (NLS1s) studied by Boller, Brandt & Fink. The ASCA spectrum, however, shows a clear absorption feature in the energy band below 2 keV, which partly accounts for the flat spectrum observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Such absorption is rarely observed in other NLS1s. The absorption is mainly the result of cold (neutral or slightly ionized) gas with a column density of (2–3) × 1021 cm−2. A reanalysis of the PSPC data shows that an extrapolation of the best-fitting model for the ASCA spectrum underpredicts the X-ray emission observed with the PSPC below 0.4 keV if the absorber is neutral (which indicates that the absorber is slightly ionized), covers only part of the central source, or there is extra soft thermal emission from an extended region. There is also evidence that the X-ray absorption is complex; an additional edge feature marginally detected at 0.84 keV suggests the presence of an additional high-ionization absorber, which imposes a strong O  viii edge on the spectrum. After correction for the absorption, the photon index of the intrinsic continuum, Γ ≃ 1.8, obtained from the ASCA data is quite similar to that of ordinary Seyfert 1 galaxies. Mrk 507 still has one of the flattest continuum slopes among the NLS1s, but is no longer exceptional. The strong optical Fe  ii emission remains unusual in the light of the correlation between Fe  ii strengths and steepness of soft X-ray slope.  相似文献   

7.
8.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

9.
10.
We present XMM-Newton observations of Mrk 359, the first narrow-line Seyfert 1 galaxy (NLS1) discovered. Even among NLS1s, Mrk 359 is an extreme case with extraordinarily narrow optical emission lines. The XMM-Newton data show that Mrk 359 has a significant soft X-ray excess which displays only weak absorption and emission features. The     continuum, including reflection, is flatter than that of the typical NLS1, with     . A strong emission line of equivalent width ≈200 eV is also observed, centred near 6.4 keV. We fit this emission with two line components of approximately equal strength: a broad iron line from an accretion disc and a narrow, unresolved core. The unresolved line core has an equivalent width of ≈120 eV and is consistent with fluorescence from neutral iron in distant reprocessing gas, possibly in the form of a 'molecular torus'. Comparison of the narrow-line strengths in Mrk 359 and other low–moderate luminosity Seyfert 1 galaxies with those in QSOs suggests that the solid angle subtended by the distant reprocessing gas decreases with increasing active galactic nucleus luminosity.  相似文献   

11.
We present a systematic analysis of the X-ray spectral properties of a sample of 22 'narrow-line' Seyfert 1 galaxies for which data are available from the ASCA public archive. Many of these sources, which were selected on the basis of their relatively narrow H β linewidth (FWHM ≤2000 km s−1), show significant spectral complexity in the X-ray band. Their measured hard power-law continua have photon indices spanning the range 1.6–2.5 with a mean of 2.1, which is only slightly steeper than the norm for 'broad-line' Seyfert 1s. All but four of the sources exhibit a soft excess, which can be modelled as blackbody emission ( T bb≈100–300 eV) superposed on the underlying power law. This soft component is often so strong that, even in the relatively hard bandpass of ASCA , it contains a significant fraction, if not the bulk, of the X-ray luminosity, apparently ruling out models in which the soft excess is produced entirely through reprocessing of the hard continuum.
Most notably, six of the 22 objects show evidence for a broad absorption feature centred in the energy range 1.1–1.4 keV , which could be the signature of resonance absorption in highly ionized material. A further three sources exhibit 'warm absorption' edges in the 0.7–0.9 keV bandpass. Remarkably, all nine 'absorbed' sources have H β linewidths below 1000 km s−1, which is less than the median value for the sample taken as a whole. This tendency for very narrow linewidths to correlate with the presence of ionized absorption features in the soft X-ray spectra of NLS1s, if confirmed in larger samples, may provide a further clue in the puzzle of active galactic nuclei.  相似文献   

12.
13.
14.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

15.
16.
A 100-ks XMM–Newton observation of the nearby Seyfert 2 galaxy Mkn 3 offers a unique opportunity to explore the complexity of its X-ray spectrum. We find the  ∼3–8 keV  continuum to be dominated by reflection from cold matter, with fluorescent K-shell lines detected from Ni, Fe, Ca, Ar, S, Si and Mg. At higher energies an intrinsic power-law continuum, with canonical Seyfert 1 photon index, is seen through a near-Compton-thick cold absorber. A soft excess below ∼3 keV is found to be dominated by line emission from an outflow of 'warm' gas, photoionized and photoexcited by the intrinsically strong X-ray continuum. Measured blueshifts in the strong Fe Kα and O  vii and O  viii emission lines are discussed in terms of the properties of the putative molecular torus and ionized outflow.  相似文献   

17.
Note from the editor: This article is a re-print of the original, which appeared in Astron. Nachr. 319 (1/2), 7 (1998). In the original version the figure was ruined in the process of paper production and the scientific content of the paper considerably degraded. Instead of printing only the correct figure, thus loosing the scientific context, we decided to re-print the whole article. We describe how recent X-ray surveys have led to advances in the understanding of ultrasoft narrow-line Seyfert 1 galaxies. The number of known ultrasoft narrow-line Seyfert 1s has increased greatly in recent years due to X-ray surveys, and it is now possible to obtian high quality 0.1–10 keV spectral and variability measurements for a large number of these galaxies. We generalize some of the correlations between X-ray properties and optical emission line properties,focusing on how the ROSAT band spectral slope appears to be directly connected to the Boroson & Green (1992) primary eigenvector. We discuss how ultrasoft narrow-line Seyfert 1s may well have extremal values of a primary physical parameter, and we describe new projects that should further improve our understanding of these extreme representatives of Seyfert activity.  相似文献   

18.
19.
20.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号