首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A selection of future observing facilities relevant to galaxy evolution science covering the wavelength range from X-rays to the radio regime are summarized. Scientific aspects that can be investigated with these next generation telescopes are briefly discussed. While prospects look bright for highly advanced and innovative future facilities, it will be important to ensure that human resources in observational astronomy and theory – both in terms of expertise, funding, and available positions – are keeping pace with the technological developments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
New challenges for adaptive optics: extremely large telescopes   总被引:1,自引:0,他引:1  
The performance of an adaptive optics (AO) system on a 100-m diameter ground-based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60 per cent is achieved at 0.5 μm with a limiting magnitude of the AO guide source near R   magnitude~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use three or four reference sources and up to three deformable mirrors, which increase up to 8-fold the corrected field size (up to 60 arcsec at 0.5 μm). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50 per cent with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint ( R ~22) NGS for low-order correction, which results in a sky coverage of 40 per cent at the Galactic poles in the visible.  相似文献   

3.
The early days of radio astronomy showed incredibly diverse experimentation in ways to sample the electromagnetic spectrum at radio wavelengths. In addition to obtaining adequate sensitivity by building large collection areas, a primary goal also was to achieve sufficient angular resolution to localize radio sources for multi-wavelength identification. This led to many creative designs and the invention of aperture synthesis and VLBI. Some of the basic telescope types remain to the present day, now implemented across the entire radio spectrum from wavelengths of tens of meters to submillimeter wavelengths. In recent years, as always, there is still the drive for greater sensitivity but a primary goal is now to achieve very large fields of view to complement high resolution and frequency coverage, leading to a new phase of experimentation. This is the “back to the future” aspect of current research and development for next-generation radio telescopes. In this paper I summarize the scientific motivations for development of new technology and telescopes since about 1990 and going forward for the next decade and longer. Relevant elements include highly optimized telescope optics and feed antenna designs, innovative fabrication methods for large reflectors and dipole arrays, digital implementations, and hardware vs. software processing. The emphasis will be on meter and centimeter wavelength telescopes but I include a brief discussion of millimeter wavelengths to put the longer wavelength enterprises into perspective. I do not discuss submillimeter wavelengths because they are covered in other papers.  相似文献   

4.
Several new robotic telescopes had or will see first light in 2005/2006 and are designed for either wide-field imaging, high-precision photometry or even for high-resolution echelle spectroscopy. These telescopes are in the 1–2 m class and therefore will focus on very specific tasks. Here, I present an update of the robotic STELLA facility currently under construction in Tenerife and emphasize its science capabilities for binary-star research. Among the many science applications of STELLA is the monitoring of magnetic activity in single and binary stars and their relation to age, rotation rate, metallicity and binarity per se.The AIP STELLA team members are T. Granzer, M. Weber, M. Woche, M. I. Andersen, J. Bartus, S.-M. Bauer, F. Dionies, T. Fechner, H. Korhonen, J. Paschke, E. Popow, A. Ritter, A. Schwope, A. Staude, A. Washuettl  相似文献   

5.
This article gives a brief overview of 400 years of research in the field of novae and related stars. Important objects, first applications of various observing techniques, and early ideas of the interpretation of phenomena are listed. Also, the historical evolution of the classification of novae and related stars (supernovae, dwarf novae), as well as their use as distance indicators is discussed (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.  相似文献   

7.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
At the celebration of 400 years of telescopic observations, it is appropriate to consider future ground-based facilities enabled by continuing technological developments, and driven by astronomical questions which are amongst the most fundamental in science and are of enormous interest to the general public.  相似文献   

9.
A slitless UBVR spectrograph has been built for use on small telescopes. Test observations on the Zeiss-600 telescope at the Terskol peak demonstrated that the spectrograph is an efficient instrument for studying high-speed processes in variable stars with a high temporal resolution. The spectrograph resolving power R ≈ 100 in the vicinity of λ = 480 nm and the error in the determination of the wavelength is approximately 3 nm. The spectrograph provides a moderate signal-to-noise ratio for stars up to 16 m . It permits one to measure equivalent widths of unblended lines down to 0.1 nm. The developed special software based on the theory of quantum statistics makes it possible to detect relative variations in the spectrum of approximately 10?5–10?6 of the bolometric flux of the star. Observations with the spectrograph made it possible to detect variations of emissions in Balmer lines and Ca II H, K lines in the EV Lac flare star in the subsecond range. The spectroscopic monitoring permits one to study stellar flares with small amplitude, to carry out a comprehensive colorimetric analysis of flare plasma, and to determine temperatures and sizes of flares in the light intensity maximum. Observations of the transit of the HAT-P-1 B exoplanet demonstrate that the chromospheric activity power of the parent star does not vary during the transit. The slitless spectrograph with a low resolving capacity opens new prospects in studying active processes occurring on stars’ surfaces.  相似文献   

10.
We present a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX All-Sky Imaging survey: GUVcat_AIS (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017). The catalog includes 83 million unique sources (duplicate measurements and rim artifacts are removed) measured in far-UV and near-UV. With respect to previous versions (Bianchi et al. in Mon. Not. R. Astron. Soc. 411:2770 2011a, Adv. Space Res. 53:900–991, 2014), GUVcat_AIS covers a slightly larger area, 24,790 square degrees, and includes critical corrections and improvements, as well as new tags, in particular to identify sources in the footprint of extended objects, where pipeline source detection may fail and custom-photometry may be necessary. The UV unique-source catalog facilitates studies of density of sources, and matching of the UV samples with databases at other wavelengths.We also present first results from two ongoing projects, addressing respectively UV variability searches on time scales from seconds to years by mining the GALEX photon archive, and the construction of a database of ~120,000 GALEX UV spectra (range ~1300–3000 Å), including quality and calibration assessment and classification of the grism, hence serendipitous, spectral sources.  相似文献   

11.
The volume and the photosensitive area of next generation detectors of the numerous rarely occurring phenomena will greatly exceed the sizes of the current experiments. These phenomena include cosmic neutrinos, atmospheric neutrinos, long-baseline neutrino beams from accelerators, geo-neutrinos, geo-reactor neutrinos, and hypothetic proton decays. Similar requirements hold for a new type of a large scanning device for homeland security and nuclear proliferation control, and for the future widely accessible medical imaging devices. Photon detectors are the most important component of such detectors. Existing photosensors are based on vacuum tubes and dynode electron multipliers that are essentially hand-made, expensive and nearly impossible to produce in large enough quantities. Silicon detectors are too small for experiments requiring a very large photosensitive area. Our laboratory is developing novel detectors with a large photosensitive area that can be mass-produced, similar to large flat panel TV displays.  相似文献   

12.
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star’s intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).  相似文献   

13.
The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?  相似文献   

14.
We present high-precision JHK photometry with the 3.8-m UK Infrared Telescope (UKIRT) of 82 standard stars, 28 from the widely used preliminary list known as the 'UKIRT Faint Standards', referred to here as the Fundamental List, and 54 additional stars referred to as the Extended List. The stars have 9.4< K <15.0 and all or most should be readily observable with imaging array detectors in normal operating modes on telescopes of up to 10-m aperture. Many are accessible from the southern hemisphere. Arcsec-accuracy positions (J2000, epoch ∼1998) are given, together with optical photometry and spectral types from the literature, where available, or inferred from the J − K colour. K -band finding charts are provided for stars with proper motions exceeding 0.3 arcsec yr−1. We discuss some pitfalls in the construction of flat-fields for array imagers and a method to avoid them. On 30 nights between late 1994 and early 1998 the stars from the Fundamental List, which were used as standards for the whole programme, were observed on an average of 10 nights each, and those from the Extended List on an average of six nights. The average internal standard error of the mean results for the K magnitudes is 0.005 mag; for the J − H colours it is 0.003 mag for the Fundamental List stars and 0.005 mag for those of the Extended List; for H − K the average is 0.004 mag. The results are on the natural system of the IRCAM3 imager, which used a 256×256 InSb detector array with 'standard' JHK filters, behind gold-coated fore-optics and a gold- or silver-dielectric coated dichroic. We give colour transformations on to the CIT, Arcetri and LCO/Palomar NICMOS systems, and preliminary transformations on to the system defined by the new Mauna Kea Observatory near-infrared filter set.  相似文献   

15.
Results on the structure coefficient of the temperature field present in the low atmosphere are presented. Measurements have been performed during the national Italian expedition for solar site testing in Isola delle Correnti (southern Sicily).Calculations have been carried out to show the effect of the observed thermal properties of the low atmosphere on telescope performances, with various assumptions as the structure at greater heights.  相似文献   

16.
A method for finishing the surface shape of large mirrors for space telescopes that are accurate up to λ/20 is described, as well as training of the method for manufacturing a systall mirror 2.6 m in diameter for the ZTSH telescope.  相似文献   

17.
Nova explosions are caused by the explosive burning of hydrogen in the envelope of accreting white dwarfs. During the thermonuclear runaway some radioactive isotopes are synthesized, which emit γ -rays when they decay. The γ -ray signatures of a nova explosion still remain undetected, because even the best instruments like SPI onboard INTEGRAL are not sensitive enough for the dim and broad lines emitted by novae at their typical distances. A very different situation is expected with a focusing telescope, like MAX. Prospects for detectability with a future γ -ray lens telescope are presented, with a special emphasis on the important information that γ -rays would provide about the explosion mechanism and the underlying white dwarf star  相似文献   

18.
We have constructed an analytical model to simulate the behaviour of an adaptive optics system coupled with a sodium laser guide star. The code is applied to 3.6- and 8-m class telescopes. The results are given in terms of Strehl ratio and full width at half-maximum of the point spread function. Two atmospheric models are used, one representing good atmospheric conditions (20 per cent of the time), the other median conditions.   Sky coverage is computed for natural guide star and laser guide star systems, with two different methods. The first one is a statistical approach, using stellar densities to compute the probability of finding a nearby reference. The second is a cross-correlation of a science-object catalogue and the USNO catalogue. Results are given in terms of percentage of the sky that can be accessed with given performances, and in terms of the number of science objects that can be observed, with Strehls greater than 0.2 and 0.1 in the K and J bands.  相似文献   

19.
In the case of ground-based telescopes equipped with adaptive optics systems, the point spread function (PSF) is only poorly known or completely unknown. Moreover, an accurate modeling of the PSF is in general not available. Therefore in several imaging situations the so-called blind deconvolution methods, aiming at estimating both the scientific target and the PSF from the detected image, can be useful. A blind deconvolution problem is severely ill-posed and, in order to reduce the extremely large number of possible solutions, it is necessary to introduce sensible constraints on both the scientific target and the PSF.In a previous paper we proposed a sound mathematical approach based on a suitable inexact alternating minimization strategy for minimizing the generalized Kullback–Leibler divergence, assuring global convergence. In the framework of this method we showed that an important constraint on the PSF is the upper bound which can be derived from the knowledge of its Strehl ratio. The efficacy of the approach was demonstrated by means of numerical simulations.In this paper, besides improving the previous approach by the use of a further constraint on the unknown scientific target, we extend it to the case of multiple images of the same target obtained with different PSFs. The main application we have in mind is to Fizeau interferometry. As it is known this is a special feature of the Large Binocular Telescope (LBT). Of the two expected interferometers for LBT, one, LINC-NIRVANA, is forthcoming while the other, LBTI, is already operating and has provided the first Fizeau images, demonstrating the possibility of reaching the resolution of a 22.8 m telescope. Therefore the extension of our blind method to this imaging modality seems to be timely.The method is applied to realistic simulations of imaging both by single mirrors and Fizeau interferometers. Successes and failures of the method in the imaging of stellar fields are demonstrated in simple cases. These preliminary results look promising at least in specific situations. The IDL code of the proposed method is available on request and will be included in the forthcoming version of the Software Package AIRY (v.6.1).  相似文献   

20.
Combination of Fresnel Zone Plates (FZP) can make an excellent telescope for imaging in X-rays. We present here the results of our experiments with several pairs of tungsten made Fresnel Zone plates in presence of an X-ray source kept at a distance of about 45 ft. The quasi-parallel beam allowed us to study sources placed on the axis as well as off the axis of the telescope. We present theoretical study of the fringe patterns produced by the zone plates in presence of a quasi-parallel source. We compare the patterns obtained from experiments with those obtained by our Monte-Carlo simulations. The images are also reconstructed by deconvolution from both the patterns. We compare the performance of such a telescope with other X-ray imaging devices used in space-astronomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号