首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have derived the X-ray luminosities of a sample of galaxies in groups, making careful allowance for contaminating intragroup emission. The L X: L B and L X: L FIR relations of spiral galaxies in groups appear to be indistinguishable from those in other environments, however the elliptical galaxies fall into two distinct classes. The first class is central-dominant group galaxies, which are very X-ray luminous and may be the focus of group cooling flows. All other early-type galaxies in groups belong to the second class, which populates an almost constant band of L X/ L B over the range 9.8< log  L B<11.3 . The X-ray emission from these galaxies can be explained by a superposition of discrete galactic X-ray sources together with a contribution from hot gas lost by stars, which varies a great deal from galaxy to galaxy. In the region where the optical luminosity of the non-central group galaxies overlaps with the dominant galaxies, the dominant galaxies are over an order of magnitude more luminous in X-rays.
We also compared these group galaxies with a sample of isolated early-type galaxies, and used previously published work to derive L X: L B relations as a function of environment. The non-dominant group galaxies have mean L X/ L B ratios very similar to those of isolated galaxies, and we see no significant correlation between L X/ L B and environment. We suggest that previous findings of a steep L X: L B relation for early-type galaxies result largely from the inclusion of group-dominant galaxies in samples.  相似文献   

3.
4.
5.
We present an X-ray spectral analysis of a sample of eight bona fide Seyfert 2 galaxies, selected on the basis of their high [O  iii ] λ 5007 flux, from the Ho et al. spectroscopic sample of nearby galaxies. We find that, in general, the X-ray spectra of our Seyfert 2 galaxies are complex, with some of our objects having spectra different from the 'typical' spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC 3147 and 4698) show no evidence for intrinsic absorption. We suggest that this is a result of the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our ASCA data alone cannot discriminate whether low-absorption objects are Compton-thick active galactic nuclei (AGNs) with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC 4698. Its spectrum could be explained by either a dusty warm absorber or a lack of broad-line clouds so that its appearance as a Seyfert 2 is intrinsic and not a result of absorption.  相似文献   

6.
7.
39 galaxies are now known, from follow-up of faint IRAS sources and from submillimetre observations of high-redshift AGN, with far-infrared luminosities >1013 L. 13 of these, which have been found in 60- or 850-μm surveys, form an important unbiased subsample. 12 have been found by comparison of 60-μm surveys with quasar or radio galaxy catalogues, or from infrared surveys with colour selection biased towards AGN, while a further 14 have been found through submillimetre observations of known high-redshift AGN. In this paper I argue, on the basis of detailed modelling of the spectral energy distributions of hyperluminous galaxies with accurate radiative transfer models, and from evidence of high gas mass in several cases, that the bulk of the emission from these galaxies at rest frame wavelengths ≥50 μm is caused by star formation. Even after correction for the effects of lensing, hyperluminous galaxies with emission peaking at rest frame wavelengths ≥50 μm are therefore undergoing star formation at rates >103 M yr−1 and are strong candidates for being primeval galaxies, in the process of a major episode of star formation.  相似文献   

8.
9.
10.
11.
12.
This paper estimates the relative frequency of different types of core-collapse supernovae, in terms of the ratio between the number of Type Ib–Ic and of Type II supernovae. We estimate independently for all normal and Seyfert galaxies whose radial velocity is ≤14 000 km s−1, and which had at least one supernova event recorded in the Asiago catalogue from 1986 January to 2000 August. We find that the ratio is  ≈0.23±0.05  in normal galaxies. This value is consistent with constant star formation rate and with a Salpeter initial mass function and an average binary rate ≈50 per cent. On the contrary, Seyfert galaxies exceed the ratio in normal galaxies by a factor ≈4 at a confidence level ≳2 σ . A caveat is that the numbers for Seyferts are still small (six of Type Ib–Ic and six of Type II supernovae discovered as yet). Assumed to be real, this excess of Type Ib/c supernovae may indicate a burst of low-age star formation  ( τ ≲20 Myr)  , a high incidence of binary systems in the inner regions  ( r ≲0.4 R 25)  of Seyfert galaxies, or a top-loaded mass function.  相似文献   

13.
14.
We identify eight   z > 1  radio sources undetected at 850 μm but robustly detected at 70 μm, confirming that they represent ultraluminous infrared galaxies (ULIRGs) with hotter dust temperatures  (〈 T d〉= 52 ± 10 K)  than submillimetre galaxies (SMGs) at similar luminosities and redshifts. These galaxies share many properties with SMGs: ultraviolet spectra consistent with starbursts, high stellar masses and radio luminosities. We can attribute their radio emission to star formation since high-resolution Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps show extended emission regions (with characteristic radii of 2–3 kpc), which are unlikely to be generated by active galactic nucleus (AGN) activity. These observations provide the first direct confirmation of hot, dusty ULIRGs which are missed by current submillimetre surveys. They have significant implications for future observations from the Herschel Space Observatory and Submillimetre Common-User Bolometer Array 2 (SCUBA2), which will select high-redshift luminous galaxies with less selection biases.  相似文献   

15.
We present the first results of our Hubble Space Telescope HST WFPC2 F814W snapshot imaging survey, targeting virtually all sub-mJy decimetric radio-selected star-forming galaxies. The radio selection at ∼1 GHz is free from extinction effects and the radio luminosities are largely unaffected by AGN contamination, making these galaxies ideal tracers of the cosmic star formation history. A subsample of four targets is presented here, selected at 1.4 GHz from the spectroscopically homogenous and complete samples of Benn et al. and Hopkins et al. The redshifts are confined to a narrow range around z ∼0.2, to avoid differential evolution, with a radio luminosity close to L ∗ where the galaxies dominate the comoving volume-averaged star formation rate. We find clearly disturbed morphologies resembling those of ultraluminous infrared galaxies, indicating that galaxy interactions may be the dominant mechanism for triggering star formation at these epochs. The morphologies are also clearly different from those of coeval quasars and radio galaxies, as found in star-forming galaxies selected at other wavelengths. This may prove challenging for models that propose direct causal links between AGN evolution and the cosmic star formation history at these epochs. The asymmetries are typically much larger than seen in the Canada–France Redshift Survey at similar redshifts, optical luminosities and H α -derived star formation rates, indicating the possible existence of an obscuration-related morphological bias in such samples.  相似文献   

16.
17.
18.
19.
We have produced radio maps, using the Australia Telescope Compact Array, of the central regions of six southern type 2 Seyfert galaxies (NGC 1365, 4945, 6221, 6810, 7582 and Circinus) with circumnuclear star formation, to estimate the relative contribution of star formation activity compared to activity from the active galactic nucleus (AGN). The radio morphologies range from extended diffuse structures to compact nuclear emission, with no evidence, even in the relatively compact sources, for synchrotron self-absorption. In each case the radio to far-infrared (FIR) ratio has a value consistent with star formation, and in all but one case the radio to [Fe  II ] ratio is also consistent with star formation. We derive supernova rates and conclude that, despite the presence of a Seyfert nucleus in these galaxies, the radio, FIR and [Fe  II ] line emissions are dominated by processes associated with the circumnuclear star formation (i.e. supernova remnants and H  II regions) rather than with the AGN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号