首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王迎光 《海洋工程》2016,(3):447-458
This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.  相似文献   

2.
Modified Rayleigh distribution of wave heights in transitional water depths   总被引:2,自引:1,他引:1  
This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.  相似文献   

3.
This study aims to present an evaluation and implementation of a high-resolution SWAN wind wave hindcast model forced by the CFSR wind fields in the west Mediterranean basin, taking into account the recent developments in wave modelling as the new source terms package ST6. For this purpose, the SWAN model was calibrated based on one-year wave observations of Azeffoune buoy (Algerian coast) and validated against eleven wave buoys measurements through the West Mediterranean basin. For the calibration process, we focused on the whitecapping dissipation coefficient Cds and on the exponential wind wave growth and whitecapping dissipation source terms. The statistical error analysis of the calibration results led to conclude that the SWAN model calibration corrected the underestimation of the significant wave height hindcasts in the default mode and improved its accuracy in the West Mediterranean basin. The exponential wind wave growth of Komen et al (1984) and the whitecapping dissipation source terms of Janssen (1991) with Cds = 1.0 have been thus recommended for the western Mediterranean basin. The comparison of the simulation results obtained using this calibrated parameters against eleven measurement buoys showed a high performance of the calibrated SWAN model with an average scatter index of 30% for the significant wave heights and 19% for the mean wave period. This calibrated SWAN model will constitute a practical wave hindcast model with high spatial resolution (˜3 km) and high accuracy in the Algerian basin, which will allow us to proceed to a finer mesh size using the SWAN nested grid system in this area.  相似文献   

4.
Forecasting seasonal to multi-year shoreline change   总被引:1,自引:0,他引:1  
This contribution details a simple empirical model for forecasting shoreline positions at seasonal to interannual time-scales. The one-dimensional (1-D) model is a simplification of a 2-D behavioural-template model proposed by Davidson and Turner (2009). The new model is calibrated and tested using five-years of weekly video-derived shoreline data from the Gold Coast, Australia. The modelling approach first utilises a least-squares methodology to calibrate the empirical model coefficients using the first half of the dataset of observed shoreline movement in response to known forcing by waves. The model is then verified by comparison of hindcast shoreline positions to the second half of the observed shoreline dataset. One thousand synthetic time-series of wave height and period are generated that encapsulate the statistical characteristics of the modelled wave field, retaining the observed seasonal variability and sequencing characteristics. The calibrated model is used in conjunction with the simulated wave time-series to perform Monte Carlo forecasting of the resulting shoreline positions. The ensemble-mean of the 1000 individual five-year shoreline simulations is compared to the unseen shoreline time-series. A simple linear trend forecast of the shoreline position was used as a baseline for assessing the performance of the model. The model performance relative to this baseline prediction was quantified by several objective methods, including cross-correlation (r), root mean square (RMS) error analysis and Brier Skill tests. Importantly, these tests involved no prior knowledge of either the wave forcing or shoreline response. The new forecast model was found to significantly improve shoreline predictions relative to the simple linear trend model, capturing well both the trend and seasonal shoreline variabilities observed at this site. Brier Skill Scores (BSS) indicate that the model forecasts based on unseen data were rated as ‘excellent’ (BSS = 0.83), and root mean square errors were less than 7 m (≈ 14% of the observed variability). The standard deviations of the 1000 individual simulations from ensemble-averaged ‘mean’ forecast were found to provide a useful means of predicting the higher-frequency (individual storm) shoreline variability, with 98% of the observed shoreline data falling within two standard deviations of the forecast position.  相似文献   

5.
To provide coastal engineers and scientists with a detailed inter-comparison of widely used parametric wave transformation models, several models are tested and calibrated with extensive observations from six field experiments on barred and unbarred beaches. Using previously calibrated (“default”) values of a free parameter γ, all models predict the observations reasonably well (median root-mean-square wave height errors are between 10% and 20%) at all field sites. Model errors can be reduced by roughly 50% by tuning γ for each data record. No tuned or default model provides the best predictions for all data records or at all experiments. Tuned γ differ for the different models and experiments, but in all cases γ increases as the hyperbolic tangent of the deep-water wave height, Ho. Data from two experiments are used to estimate empirical, universal curves for γ based on Ho. Using the new parameterization, all models have similar accuracy, and usually show increased skill relative to using default γ.  相似文献   

6.
The applicability of three different wave-propagation models in nonlinear dispersive wave fields has been investigated. The numerical models tested here are based on three different wave theories: a fully nonlinear potential theory, a Stokes second-order theory, and a Boussinesq-type theory with an improved dispersion relation. Physical experiments and computations were conducted for wave evolutions during passage over a submerged shelf under various wave conditions. As expected, the fully nonlinear solutions agree better with the measurements than do the other solutions. Although the second-order solution has sufficient accuracy for smaller-amplitude wave cases, the truncation after the third harmonics causes significant discrepancies in wave form for larger waves. In addition, the second-order model markedly overestimates the first- and second-harmonic amplitudes in transmitted waves. The Boussinesq model provides excellent predictions of wave profile over the shelf even in larger wave cases. However, this model also overestimates the magnitudes of several higher harmonics in transmitted waves. These facts may indicate that energy transfer from bound components into free waves in these higher harmonics cannot be accurately evaluated by the Boussinesq-type equations.  相似文献   

7.
《Coastal Engineering》2005,52(3):221-236
The notion of data assimilation is common in most wave predictions. This typically means nudging of wave observations into numerical predictions so as to drive the predictions towards the observations. In this approach, the predicted wave climate is corrected at each time of the observation. However, the corrections would diminish soon in the absence of future observations. To drive the model state predictions towards real time climatology, the updating has to be carried out in the forecasting horizon too. This could be achieved if the wave forecasting at the observational network is made available. The present study addresses a wave forecasting technique for a discrete observation station using local models. Embedding theorem based on the time-lagged embedded vector is the basis for the local model. It is a powerful tool for time series forecasting. The efficiency of the forecasting model as an error correction tool (by combining the model predictions with the measurements) has been brought up in a forecasting horizon from few hours to 24 h. The parameters driving the local model are optimised using evolutionary algorithms.  相似文献   

8.
Surface water wave elevations and kinematics from four unidirectional irregular wave trains, with a Pierson and Moskowitz or JONSWAP random wave spectrum, were measured in the laboratory using resistance wave probes and a laser Doppler anemometer. The wave elevation data, velocity time series, extreme (largest) wave horizontal velocity profiles and extreme wave acceleration fields are compared with the predictions of a new wave kinematics model, named the hybrid wave model. Irregular waves are commonly viewed as the summation of many linear wave components of different frequencies, but more accurate predictions of downstream surface elevations (wave evolution) and wave kinematics are attained by considering the non-linear interactions among wave components. The hybrid wave model incorporates these non-linear wave component interactions, and its wave evolution predictions and kinematics estimates are compared with laboratory measurements in this study. Linear random wave theory, Wheeler stretching and linear extrapolation wave kinematic prediction techniques are also compared. Comparisons between measurements and hybrid wave model estimates demonstrate its improved capability to predict velocity and acceleration fields and wave evolution in two-dimensional irregular waves.  相似文献   

9.
Prototype scale physical model tests were conducted to investigate the sheetflow sediment transport of uniform sand under different skewed-asymmetric oscillatory flows with and without the presence of relatively strong currents in the opposite direction against wave propagation. Experiments show that in most cases with fine sands, the “cancelling effect” which balances the on-/off-shore net transport under pure asymmetric/skewed oscillatory flows and results a moderate net transport was developed for combined skewed-asymmetric shaped oscillations. However, under certain conditions (T > 5 s) with coarse sands, the onshore sediment transport was enhanced for combined skewed-asymmetric flows. Additionally, the new experimental data under collinear oscillatory flows and strong currents show that offshore net transport rates increase with decreasing velocity skewness and acceleration skewness. Sediment movement behaviors were investigated through analysis of experimental data obtained from the image analysis technique and attempts were made to estimate and formulate the sheetflow layer thickness. Accordingly, sediment transport under oscillatory sheetflow conditions was studied and successfully explained by comparing the bed shear stress and the phase lag parameter at each half cycle. Consequently, these parameters were incorporated in an improved Dibajinia and Watanabe's type sediment transport model. The formula is calibrated against a comprehensive experimental data (331 in total). Good agreement obtained between predictions and measurements shows that the new formula is fulfilled for practical purposes.  相似文献   

10.
The performance of the new wave diffraction feature of the shallow-water spectral model SWAN, particularly its ability to predict the multidirectional wave transformation around shore-parallel emerged breakwaters is examined using laboratory and field data. Comparison between model predictions and field measurements of directional spectra was used to identify the importance of various wave transformation processes in the evolution of the directional wave field. First, the model was evaluated against laboratory measurements of diffracted multidirectional waves around a breakwater shoulder. Excellent agreement between the model predictions and measurements was found for broad frequency and directional spectra. The performance of the model worsened with decreasing frequency and directional spread. Next, the performance of the model with regard to diffraction–refraction was assessed for directional wave spectra around detached breakwaters. Seven different field cases were considered: three wind–sea spectra with broad frequency and directional distributions, each coming from a different direction; two swell–sea bimodal spectra; and two swell spectra with narrow frequency and directional distributions. The new diffraction functionality in SWAN improved the prediction of wave heights around shore-parallel breakwaters. Processes such as beach reflection and wave transmission through breakwaters seem to have a significant role on transformation of swell waves behind the breakwaters. Bottom friction and wave–current interactions were less important, while the difference in frequency and directional distribution might be associated with seiching.  相似文献   

11.
Vegetation canopies control mean and turbulent flow structure as well as surface wave processes in coastal regions. A non-hydrostatic RANS model based on NHWAVE (Ma et al., 2012) is developed to study turbulent mixing, surface wave attenuation and nearshore circulation induced by vegetation. A nonlinear k  ϵ model accounting for vegetation-induced turbulence production is implemented to study turbulent flow within the vegetation field. The model is calibrated and validated using experimental data from vegetated open channel flow, as well as nonbreaking and breaking random wave propagation in vegetation fields. It is found that the drag-related coefficients in the k  ϵ model Cfk and C can greatly affect turbulent flow structure, but seldom change the wave attenuation rate. The bulk drag coefficient CD is the major parameter controlling surface wave damping by vegetation canopies. Using the empirical formula of Mendez and Losada (2004), the present model provides accurate predictions of vegetation-induced wave energy dissipation. Wave propagation through a finite patch of vegetation in the surf zone is investigated as well. It is found that the presence of a finite patch of vegetation may generate strong pressure-driven nearshore currents, with an onshore mean flow in the unvegetated zone and an offshore return flow in the vegetated zone.  相似文献   

12.
C.W. Li  Y. Song 《Ocean Engineering》2006,33(5-6):635-653
A procedure to correlate extreme wave heights and extreme water levels in coastal waters using numerical models together with joint probability analysis has been proposed. A third-generation wave model for wave simulation and a three-dimensional flow model for water level simulation are coupled through the surface atmospheric boundary layer. The model has been calibrated and validated against wind, wave and water level data collected in the coastal waters of Hong Kong. The annual maximum wave height and the concomitant water level have been obtained by simulating the annual extreme typhoon event for 50 consecutive years. The results from bivariate extreme value analysis of the simulated data show that the commonly used empirical method may lead to underestimation of the design water level.  相似文献   

13.
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.  相似文献   

14.
为准确模拟孤立波在岸礁地形上的传播和爬坡,采用基于完全非线性Boussinesq方程开发的Funwave-TVD模型,探究模型的可行性,并利用验证后的模型进一步研究岸礁各地形因素对孤立波爬高的影响。研究结果表明:模型能准确模拟孤立波在岸礁陡变地形上的传播及变形,摩擦系数对礁前陡坡及礁坪上的波浪传播模拟影响不大,但对爬坡预测的敏感性较强;模型空间步长可适当增大,提高计算效率;随着礁坪宽度的增大以及礁后斜坡的变缓,孤立波爬坡高度下降明显,而礁前陡坡坡度变化对孤立波爬坡高度影响不大。  相似文献   

15.
A two-dimensional finite difference numerical model, capable of predicting depth-averaged tidal flow fields in coastal and estuarine waters, has been extended to include tide-induced non-cohesive sediment transport processes. The partial differential equations governing the conservation of mass, momentum and suspended sediment in an incompressible turbulent flow are included in a depth-integrated form in the model. For the representation of the processes of erosion and deposition of sediment from the bed an empirically based source-sink term was refined, based on the results of three mobile bed flume studies. The model has been tested by simulating tidal flows and suspended sediment fluxes in two estuaries, with particular application to the Humber estuary in the U.K. The model was calibrated and found to produce an encouraging degree of agreement between the numerical predictions and corresponding field measurements for this estuary. Furthermore, the predicted gross deposition and erosion features of the estuary were found to be in close agreement with interpretations from Eulerian tidal residual predictions.  相似文献   

16.
This paper uses computational tools to examine the speed performance of various types of commercial ships including resistance and propulsion characteristics. Eight commercial ships built in the last decade were selected for the study. They include four large-sized container carriers, one bulk carrier, one VLCC, and two LNG carriers. The Reynolds averaged Navier-Stokes equation has been utilized, and the computations were executed under the same conditions of the model tests to predict the speed performance, i.e., resistance and self-propulsion. The self-propulsion point was obtained from load-varying tests. The speed performance was predicted based on the model-ship performance analysis method of the revised ITTC’78 method. The limiting streamlines on the hull, wave characteristics around the model ship, and the wake characteristics on the propeller plane were also investigated. After completing the computations, a series of model tests were conducted to evaluate the accuracy of the computational predictions. The predictions clearly reveal the differences in the resistance and propulsion characteristics regarding the various types of commercial ships, and may be applicable to hull-form design.  相似文献   

17.
The SWAN model used to study wave evolution in a flume   总被引:1,自引:0,他引:1  
The SWAN numerical model is used to model the evolution of JONSWAP wave spectra and hence the significant wave height of waves in a tank. Comparison with experiment has shown that modelling triad interactions in the numerical model leads to too low predictions of spectra and significant wave height and should therefore be excluded. The modelling of the breaking constant was also investigated, by looking at the use of a constant breaking constant, Nelson formula, and Goda formula (added into SWAN for this study). Using a constant value of 0.78 within SWAN gave the best comparison between theory and experiment.  相似文献   

18.
This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1: 25 slope at different water depths as well as the effect of choosing different turbulence models on the efficiency of the numerical model. The numerical model adopts a two-phase flow by solving Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations using the Volume Of Fluid(VOF) method and three different turbulence models. Typical environmental conditions from the East China Sea are studied. The wave run-up and the wave loads applied on the monopile are investigated and compared with relevant experimental data as well as with mathematical predictions based on relevant theories. The numerical model is well validated against the experimental data at model scale. The use of different turbulence models results in different predictions on the wave height but less differences on the wave period. The baseline turbulence model and Shear-Stress Transport(SST) turbulence model exhibit better performance on the prediction of hydrodynamic load, at a model-scale water depth of 0.42 m, while the laminar model provides better results for large water depths. The SST turbulence model performs better in predicting wave run-up for water depth 0.42 m, while the laminar model and standard model perform better at water depth 0.52 m and 0.62 m, respectively.  相似文献   

19.
寒潮影响下江苏沿海风浪场数值模拟研究   总被引:2,自引:0,他引:2  
周春建  徐福敏 《海洋工程》2017,35(2):123-130
基于第三代浅水波浪数值预报模型SWAN,建立自西北太平洋嵌套至东中国海、江苏沿海的三重嵌套模型,对2010年12月12日至15日江苏沿海寒潮大风引起的风浪过程进行了数值模拟研究。利用西北太平洋和江苏沿海实测数据对模型进行了验证,结果表明SWAN嵌套模型能较好地模拟江苏沿海寒潮风浪场的时空分布。通过响水站实测数据对江苏沿海底摩擦系数进行了率定,研究表明选取Collins拖曳理论中摩擦因数C_f=0.001时,有效波高模拟误差相对较小。寒潮风浪场的特征分析表明,有效波高分布与风场分布基本一致,寒潮风浪在江苏沿海北部影响较为显著,辐射沙洲附近由于其特殊地形影响相对较小。  相似文献   

20.
《Coastal Engineering》1998,35(3):167-183
This paper presents the results of experiments conducted on sand transport in sheet flow conditions under nonlinear asymmetric irregular oscillations with different frequency spectrums. Two methods are proposed for estimation of the transport rate. The first method which is based on a wave by wave analysis of the irregular velocity profile gives very accurate predictions. The second method, which uses a representative single wave, is less computing time consuming and still gives satisfactory results. The measured net transport rates do not show any dependence on the spectral shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号