首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Energy models are essential for the development of national or regional deep decarbonization pathways (DDPs), providing the necessary analytical framework to systematically explore the system transitions that are required. However, this is challenging due to the long time horizon, the numerous data requirements and the need for transparent, credible approaches that can provide insights into complex transitions.

This article explores how this challenge has been met to date, based on a review of the literature and the experiences of practitioners, drawing in particular on the Deep Decarbonization Pathways Project (DDPP), a collaborative effort by 16 national modelling teams. The article finds that there are a range of modelling approaches that have been used across different country contexts, chosen for different reasons, with recognized strengths and weaknesses. The key motivations for use of a given approach include being fit-for-purpose, having in-country capacity and the intertwined goals of transparency, communicability and policy credibility.

From the review, a conceptual decision framework for DDP analysis is proposed. This three step process incorporates policy priorities, national characteristics and the model-agnostic principles that drive model choices, considering the needs and capabilities of developed and developing countries, and subject to data and analytical practicalities. Finally an agenda for the further development of modelling approaches is proposed, which is vital for strengthening capacity. These include a focus on model linking, incorporating behaviour and policy impacts, the flexibility to handle distinctive energy systems, incorporating wider environmental constraints and the development of entry-level tools. The latter three are critical for application in developing countries.

Policy relevance

Following the Paris Agreement, it is essential that modelling approaches are available to enable governments to plan how to decarbonize their economies in the long term. This article takes stock of current practices, identifies the strengths and weaknesses of existing approaches and proposes how capacity can be strengthened. It also provides some practical guidance on the process of choosing modelling approaches, given national priorities and circumstances. This is particularly relevant as countries revisit their Nationally Determined Contributions to meet the global objective of remaining well below a 2°C average global temperature increase.  相似文献   

2.
The United States’ decision to withdraw from the Paris Agreement (pending possible re-engagement under different terms) may have significant ramifications for international climate policy, but the implications of this decision remain contested. This commentary illustrates how comparative analysis of US participation in multilateral environmental agreements can inform predictions and future assessments of the decision. We compare and contrast US non-participation in the Kyoto Protocol and the Paris Agreement, focusing on four key areas that may condition the influence of US treaty decisions on international climate policy: (i) global momentum on climate change mitigation; (ii) the possibility of US non-participation giving rise to alternative forms of international collaboration on climate policy; (iii) the timing and circumstances of the US decision to exit; and (iv) the influence of treaty design on countries’ incentives to participate and comply. We find that differences across the two treaties relating to the first three factors are more likely to reduce the negative ramifications of US withdrawal from the Paris Agreement compared to the Kyoto Protocol. However, the increased urgency of deep decarbonization renders US non-participation a major concern despite its declining share of global emissions. Moreover, key design features of the Paris Agreement suggest that other countries may react to the US decision by scaling back their levels of ambition and compliance, even if they remain in the Agreement.

Key policy insights

  • Increasing global momentum on mitigation since 1997 means that US withdrawal from the Paris Agreement is potentially less damaging than its non-participation in the Kyoto Protocol

  • Despite the declining US share of global emissions, greater urgency of deep decarbonization means that the non-participation of a major player, such as the US, remains problematic for global cooperation and achieving the Paris Agreement’s goals

  • Differences in the design of the Kyoto Protocol and Paris Agreement suggest that US non-participation is more likely to prompt reluctant countries to stay within the Paris framework but reduce levels of ambition and compliance, rather than exit the Agreement altogether

  相似文献   

3.
The Paris Agreement is the last hope to keep global temperature rise below 2°C. The consensus agrees to holding the increase in global average temperature to well below 2°C above pre-industrial levels, and to aim for 1.5°C. Each Party’s successive nationally determined contribution (NDC) will represent a progression beyond the party’s then current NDC, and reflect its highest possible ambition. Using Ireland as a test case, we show that increased mitigation ambition is required to meet the Paris Agreement goals in contrast to current EU policy goals of an 80–95% reduction by 2050. For the 1.5°C consistent carbon budgets, the technically feasible scenarios' abatement costs rise to greater than €8,100/tCO2 by 2050. The greatest economic impact is in the short term. Annual GDP growth rates in the period to 2020 reduce from 4% to 2.2% in the 1.5°C scenario. While aiming for net zero emissions beyond 2050, investment decisions in the next 5–10 years are critical to prevent carbon lock-in.

Key policy insights

  • Economic growth can be maintained in Ireland while rapidly decarbonizing the energy system.

  • The social cost of carbon needs to be included as standard in valuation of infrastructure investment planning, both by government finance departments and private investors.

  • Technological feasibility is not the limiting factor in achieving rapid deep decarbonization.

  • Immediate increased decarbonization ambition over the next 3–5 years is critical to achieve the Paris Agreement goals, acknowledging the current 80–95% reduction target is not consistent with temperature goals of ‘well below’ 2°C and pursuing 1.5°C.

  • Applying carbon budgets to the energy system results in non-linear CO2 emissions reductions over time, which contrast with current EU policy targets, and the implied optimal climate policy and mitigation investment strategy.

  相似文献   

4.
If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential conflicts between current free trade regimes and motivated industrial policies for deep decarbonization must be resolved. One way forward is to revisit the idea of sectoral approaches with a broader scope, including not only emission reductions, but recognizing the full complexity of low-carbon transitions in energy-intensive industries. A new approach could engage industrial stakeholders, support technology research, development and demonstration and facilitate deployment through reducing the risk for investors. The Paris Agreement allows the idea of sectoral approaches to be revisited in the interests of reaching our common climate goals.

Policy relevance

Deep decarbonization of energy-intensive industries will be necessary to meet the 2 °C target. This requires major innovation efforts over a long period. Energy-intensive industries face unique challenges from both innovation and technical perspectives due to the large scale of facilities, the character of their global markets and the potentially high mitigation costs. This article addresses these challenges and discusses ways in which the global climate policy framework should be developed after the Paris Agreement to better support transformative change in the energy-intensive industries.  相似文献   

5.
Emissions from the production of iron and steel could constitute a significant share of a 2°C global emissions budget (around 19% under the IEA 2DS scenario). They need to be reduced, and this could be difficult under nationally based climate policy approaches. We compare a new set of nationally based modelling (the Deep Decarbonization Pathways Project) with best practice and technical limit benchmarks for iron and steel and cement emissions. We find that 2050 emissions from iron and steel and cement production represent an average 0.28?tCO2 per capita in nationally based modelling results, very close to the technical limit benchmark of 0.21?tCO2 per capita, and over 2.5 times lower than the best practice benchmark of 0.72?tCO2 per capita. This suggests that national projections may be overly optimistic about achievable emissions reductions in the absence of global carbon pricing and an international research and development effort to develop low emissions technologies for emissions-intensive products. We also find that equal per capita emissions targets, often the basis of proposals for how global emissions budgets should be allocated, would be inadequate without global emissions trading. These results show that a nationally based global climate policy framework, as has been confirmed in the Paris Agreement, could lead to risks of overshooting global emissions targets for some countries and carbon leakage. Tailored approaches such as border taxes, sectoral emissions trading or carbon taxes, and consumption-based carbon pricing can help, but each faces difficulties. Ultimately, global efforts are needed to improve technology and material efficiency in emissions-intensive commodities manufacturing and use. Those efforts could be supported by technology standards and a globally coordinated R&D effort, and strengthened by the adoption of global emissions budgets for emissions-intensive traded goods.

Policy relevance

This article presents new empirical findings on global iron and steel and cement production in a low-carbon world economy, demonstrates the risks associated with a nationally based global climate policy framework as has been confirmed in the Paris Agreement, and analyses policy options to deal with those risks.  相似文献   

6.
The United Nations-led international climate change negotiations in Paris in December 2015 (COP21) trigger and enhance climate action across the globe. This paper presents a model-based assessment of the Paris Agreement. In particular, we assess the mitigation policies implied by the Intended Nationally Determined Contributions (INDCs) put forward in the run-up to COP21 by individual member states and a policy that is likely to limit global warming to 2 °C above pre-industrial levels. We combine a technology-rich bottom-up energy system model with an economy-wide top-down CGE model to analyse the impact on greenhouse gas emissions, energy demand and supply, and the wider economic effects, including the implications for trade flows and employment levels. In addition, we illustrate how the gap between the Paris mitigation pledges and a pathway that is likely to restrict global warming to 2 °C can be bridged. Results indicate that energy demand reduction and a decarbonisation of the power sector are important contributors to overall emission reductions up to 2050. Further, the analysis shows that the Paris pledges lead to relatively small losses in GDP, indicating that global action to cut emissions is consistent with robust economic growth. The results for employment indicate a potential transition of jobs from energy-intensive to low-carbon, service oriented sectors.  相似文献   

7.
One key aspect of the Paris Agreement is the goal to limit the global average temperature increase to well below 2 °C by the end of the century. To achieve the Paris Agreement goals, countries need to submit, and periodically update, their Nationally Determined Contributions (NDCs). Recent studies show that NDCs and currently implemented national policies are not sufficient to cover the ambition level of the temperature limit agreed upon in the Paris Agreement, meaning that we need to collectively increase climate action to stabilize global warming at levels considered safe. This paper explores the generalization of previously adopted good practice policies (GPPs) to bridge the emissions gap between current policies, NDCs ambitions and a well below 2 °C world, facilitating the creation of a bridge trajectory in key major-emitting countries. These GPPs are implemented in eleven well-established national Integrated Assessment Models (IAMs) for Australia, Brazil, Canada, China, European Union (EU), India, Indonesia, Japan, Russia, South Korea, and the United States, that provide least-cost, low-carbon scenarios up to 2050. Results show that GPPs can play an important role in each region, with energy supply policies appearing as one of the biggest contributors to the reduction of carbon emissions. However, GPPs by themselves are not enough to close the emission gap, and as such more will be needed in these economies to collectively increase climate action to stabilize global warming at levels considered safe.  相似文献   

8.
The emissions reduction pledges made by individual countries through the 2015 Paris Agreement represent the current global commitment to mitigate greenhouse gas emissions in the face of the enduring climate crisis. Natural lands carbon sequestration and storage are critical for successful pathways to global decarbonization (i.e., as a negative emissions technology). Coastal vegetated habitats maintain carbon sequestration rates exceeding forest sequestration rates on a per unit area basis by nearly two orders of magnitude. These blue carbon habitats and their associated carbon sequestration benefits are vulnerable to losses from land-use change and sea-level rise. Incorporation of blue carbon habitats in climate change policy is one strategy for both maintaining these habitats and conserving significant carbon sequestration capabilities. Previous policy assessments have found the potential for incorporation of coastal carbon sequestration in national-level policies, yet there has – to date – been little inclusion of blue carbon in the national-scale implementation of Paris commitments. Recently, sub-national jurisdictions have gained attention as models for pathways to decarbonization. However, few previous studies have examined sub-national level policy opportunities for operationalizing blue carbon into climate decision-making. California is uniquely poised to integrate benefits from blue carbon into its coastal planning and management and its suite of climate mitigation policies. Here, we evaluated legal authorities and policy contexts addressing sequestration specifically from blue carbon habitats. We synthesized the progressive action in California’s approaches to mitigate carbon emissions including statutory, regulatory, and non-regulatory opportunities to incorporate blue carbon ecosystem service information into state- and local-level management decisions. To illustrate how actionable blue carbon information can be produced for use in decision-making, we conducted a spatial analysis of blue carbon sequestration in several locations in California across multiple agencies and management contexts. We found that the average market values of carbon sequestration services in 2100 ranged from $7,730 to $44,000 per hectare and that the social cost of carbon sequestration value was 1.3 to 2.7 times the market value. We also demonstrated that restoration of small areas with high sequestration rates can be comparable to the sequestration of existing marshes. Our results illustrate how accessible information about carbon sequestration in coastal habitats can be directly incorporated into existing policy frameworks at the sub-national scale. The incorporation of blue carbon sequestration benefits into sub-national climate policies can serve as a model for the development of future policy approaches for negative emissions technologies, with consequences for the success of the Paris Agreement and science-based decarbonization by mid-century.  相似文献   

9.
The Paris Agreement, which entered into force in 2016, sets the ambitious climate change mitigation goal of limiting the global temperature increase to below 2°C and ideally 1.5°C. This puts a severe constraint on the remaining global GHG emissions budget. While international shipping is also a contributor to anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris Agreement. This article discusses how a share of a global CO2 budget over the twenty-first century could be apportioned to international shipping, and, using a range of future trade scenarios, explores the requisite cuts to the CO2 intensity of shipping. The results demonstrate that, under a wide range of assumptions, existing short-term levers of efficiency must be urgently exploited to achieve mitigation commensurate with that required from the rest of the economy, with virtually full decarbonization of international shipping required as early as before mid-century.

Key policy insights

  • Regulatory action is key to ensuring the international shipping sector’s long-term sustainability.

  • For the shipping industry to deliver mitigation in line with the Paris Agreement, virtually full decarbonization needs to be achieved.

  • In the near term, immediate and rapid exploitation of available mitigation measures is of critical importance.

  • Any delay in the transition will increase the risk of stranded assets, or diminish the chances of meeting the Paris Agreement's temperature commitments.

  相似文献   

10.
Drastic reductions of greenhouse-gas (GHG) emissions are required to meet the goal of the 2015 Paris climate accord to limit global warming to 1.5–2.0 °C over pre-industrial levels. We introduce the material stock-flow framework as a novel way to develop scenarios for future GHG emissions using methods from social metabolism research. The basic assumption behind our exploratory scenario approach is that nearly all final energy is required to either expand and maintain stocks of buildings, infrastructures and machinery or to provide services by using them. Distinguishing three country groups, we develop GDP- and population-driven scenarios for the development of these material stocks and the corresponding energy requirements based on historically calibrated model parameters. We analyze the results assuming different future pathways of CO2 emissions per unit of primary energy. The resulting cumulative carbon emissions from 2018 to 2050 range from 361 Gt C in the lower GDP-driven to 568 GtC in the higher population-driven scenario. The findings from the population-driven scenarios point towards the huge implications of a hypothetical convergence of per-capita levels of material stocks assuming current trajectories of technological improvements. Results indicate that providing essential services with a considerably lower level of material stocks could contribute to large reductions in global resource demand and GHG emissions. A comparison of different stock levels in 2050 demonstrates that complying with ambitious climate targets requires much faster declines of CO2 emissions per unit of primary energy if growth of material stocks is not limited.  相似文献   

11.
The role of fossils fuels in national economies will change radically over the next 40 years under a strong climate regime. However, capturing this changing role through national-based analyses is challenging due to the global nature of fossil fuel demand and resulting trade patterns. This article sets out the limitations of existing national-scale decarbonization analyses in adequately capturing global conditions and explores how the introduction of a global modelling framework could provide vital insights, particularly for those countries that are dependent on fossil fuel exports or imports.

The article shows that fossil fuel use will significantly decline by 2050, although gas will have an important transition role. This leaves large fossil fuel exporters exposed, the extent of which is determined by mitigation action in different regions and especially by the pathways adopted by the larger Asian economies. We find that global-scale models provide critical insights that complement the more detailed national analyses and should play a stronger role in informing deep decarbonization pathways (DDPs). They also provide an important basis for exploring key uncertainties around technology uptake, mitigation rates and how this plays out in the demand for fossil fuels. However, use of global models also calls for improved representation of country specifics in global models, which can oversimplify national economic and political realities. Using both model scales provides important insights that are complementary but that can challenge the other’s orthodoxy. However, neither can replace the other’s strengths.

Policy relevance:

In recent years, how global fossil fuel markets will evolve under different climate regimes has been subject to much debate and analysis. This debate includes whether investments in fossil fuel production still make sense or will be exposed in the future to liabilities associated with high carbon prices. This is important for governments who need to develop coherent policy in relation to fossil fuel sectors and their role as drivers of economic growth and in providing for domestic energy needs. This article argues that national analyses need to be fully cognizant of the global-scale transition, which can be informed by using a multi-scale modelling approach.  相似文献   

12.
Global climate change governance has changed substantially in the last decade, with a shift in focus from negotiating globally agreed greenhouse gas (GHG) reduction targets to nationally determined contributions, as enshrined in the 2015 Paris Agreement. This paper analyses trends in adoption of national climate legislation and strategies, GHG targets, and renewable and energy efficiency targets in almost all UNFCCC Parties, focusing on the period from 2007 to 2017. The uniqueness and added value of this paper reside in its broad sweep of countries, the more than decade-long coverage and the use of objective metrics rather than normative judgements. Key results show that national climate legislation and strategies witnessed a strong increase in the first half of the assessed decade, likely due to the political lead up to the Copenhagen Climate Conference in 2009, but have somewhat stagnated in recent years, currently covering 70% of global GHG emissions (almost 50% of countries). In comparison, the coverage of GHG targets increased considerably in the run up to adoption of the Paris Agreement and 89% of global GHG emissions are currently covered by such targets. Renewable energy targets saw a steady spread, with 79% of the global GHG emissions covered in 2017 compared to 45% in 2007, with a steep increase in developing countries.

Key policy insights

  • The number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population).

  • Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017.

  • Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets.

  • Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum.

  相似文献   

13.
In December 2015, China joined 190 plus nations at Paris in committing to the goal of limiting the rise in global average temperature to ‘well below’ 2°C. Carbon budget analysis indicates that goal will require not only that the European Union and US reduce their emissions by greater than 80% by 2050, but that China at least comes close to doing so as well, if any budget is to be left over for the rest of the world (RoW). Given that RoW emissions are, and will come from, low-income and emerging nations, China’s emission reduction potential is of no small consequence. In this paper, we use the Kaya identity to back out changes in the drivers of CO2 emissions, including gross domestic product (GDP), energy intensity (E/GDP) and the carbon content of energy (C/E), the latter two calculated to be consistent with China’s long-term GDP growth rate forecasts and specified 2050 CO2 emission reduction targets. Our results suggest that even achieving China’s highly optimistic renewable energy targets will be very far from sufficient to reduce China’s CO2 emissions from 9.1?Gt it emitted in 2015 to much below 3?Gt by 2050. Even reducing its emissions to 5?Gt will be challenging, yet this falls far short of what is needed if the world is to meet its ‘well below’ 2°C commitment.

Key policy insights
  • Under the Paris Agreement there is great pressure on China to very substantially reduce its emissions by 2050.

  • While China has attached great importance to renewables and nuclear energy development, even achieving the most optimistic targets would not be sufficient to reduce China’s emissions from 9.1?Gt in 2015 to much below 3?Gt by 2050.

  • China’s emission reduction potential falls far short of what is needed if the world is to meet its Paris ‘well below’ 2°C commitment, even if the EU and US reduce their emissions to zero by 2050.

  • Emission cuts consistent with the Paris Agreement will require that China and the world give much greater weight to advancing research and development of scalable low-, zero- and negative-carbon sources and technologies.

  相似文献   

14.
One of the most important challenges for the South East Europe region will be replacing more than 30% of its presently installed fossil fuel generation capacity by the end of 2030, and more than 95% by 2050 if its age structure is considered. This requires a strong policy framework to incentivise new investments in a region currently lacking investors, but also presents an opportunity to shape the electricity sector over the long term according to the broader energy transition strategy of the EU and the Energy Community. The aim of this paper is to assess what type of long-term pathways exist for electricity sector development in the region if they follow the energy transition process of the EU. In this model-based scenario assessment, long term electricity sector futures are explored using a set of interlinked electricity models evaluating the level of renewable energy investment required in the region to reach a deep decarbonization target, assuming emission reduction above 94% by 2050 compared to 1990 in line with the long term market integration and climate policy goals of the EU. It also explores what are the most important system wide impacts of the high deployment of renewable energy concerning generation adequacy and security of supply.

Key policy insights

  • Energy policies in the South East Europe (SEE) region, both at the national and regional level, should focus on enabling renewable energy integration, as this will be a key component of the future energy mix.

  • EU and Energy Community policies should be incorporated into national energy planning to ensure that SEE countries embark on the energy transition process at an early stage.

  • Stranded costs should be carefully considered in decision-making on new fossil-fuel generation and gas network investment in order to avoid lock-in to carbon intensive technologies.

  • If consistent decarbonization policy prevails, with a significant and persistent CO2 price signal, the role of natural gas remains transitory in the region.

  • The SEE region offers relatively cheap decarbonization options: the power sector can reduce GHG emissions above 94% by 2050 in the modelled scenarios.

  相似文献   

15.
Russia has significant potential for reducing its carbon emissions. However, investment in new low-carbon technologies has significant risks. Ambiguous energy and climate policy in Russia, along with deterioration of the country's investment climate, create investment barriers that are well described in qualitative terms in the literature. This paper attempts to provide a quantitative analysis of these barriers. For this numerical experiment, we apply the RU-TIMES model. Using a real options methodology, we estimate the risk-adjusted cost of capital in the Russian energy sector (including energy production and consumption technologies represented in the TIMES framework) to be approximately 43% (including a risk-free interest rate) and demonstrate the high risk of investment into energy-efficient and low-carbon technologies. Any future low-carbon emissions pathway depends on the ability of the Russian government to reduce climate and energy policy uncertainties, and to reduce financial risks through improvements of the general investment climate.

Key policy insights

  • The high cost of capital investment into Russian energy production and consumption may prevent the adoption of new energy-efficient and low-carbon technologies.

  • These investment risks, if not addressed, will delay Russia's low-carbon transition for the coming decades.

  • Adopting a clear and unambiguous long-term climate and energy policy is important to reduce these risks and alleviate some of the barriers to the new technologies.

  • The first step could be ratification of the Paris Agreement and adoption of a long-term emission target for the period up to 2050.

  相似文献   

16.
《巴黎协定》将努力控制全球温升到2100年不超过工业化前的1.5℃确定为全球温控目标之一。继2℃目标后,1.5℃也被作为应对气候变化的全球温控目标之一。目前科学界对于1.5℃目标的研究还十分有限。已有的科学研究表明,尽管区域差异很大,将全球温升控制在1.5℃范围内地球各系统要承受的气候风险可能要低于2℃。相比于2℃目标,1.5℃目标对全球减缓行动的要求更为严苛。尽管在《巴黎协定》中各缔约方承诺了各自到2030(2025)年的减排目标,但相对于实现1.5℃目标而言仍有很大的差距。多家研究机构的模拟结果表明,如完全执行当前国家自主决定贡献(NDC),到21世纪末全球温升范围为2.2~3.4℃。截至2025年,实现当前NDC的减排承诺后,2℃温升目标下全球仍有467 Gt CO2(万亿t CO2当量)的排放空间,1.5℃温升目标下全球仅剩17 Gt CO2。到2030年,基于NDC的排放已经超过了1.5℃目标的排放量。按当前的路径来看,若想实现将全球温升控制在1.5℃的范围内,全球不仅需要立即行动并采取强有力的减排、脱碳和固碳措施,在2100年前,还必须实现负排放才有可能实现这一目标。尽管当前的科学研究仍存在很大的不确定性,但1.5℃目标已是全球努力应对气候变化的方向,也是开启未来世界低碳可持续发展的重要标志。  相似文献   

17.
The Paris Agreement and next steps in limiting global warming   总被引:1,自引:0,他引:1  
The Paris Climate Agreement sets out an aggressive goal of limiting global average warming to well below 2 °C. As a first step, virtually all countries have put forth greenhouse gas emission reduction pledges in the form of nationally determined contributions, or NDCs, for the 2030 timeframe. Our analysis looks beyond the NDCs to explore potential post-2030 regional emissions reduction participation and ambition. For each scenario, we examine the implications for global emissions and long-term temperature. We then evaluate the regional consequences for energy systems and ensuing costs. We conclude by reflecting on the additional global abatement costs of tightening temperature goals. Overall, this study provides a multidimensional characterization of the scale of regional effort supporting climate outcomes, details important to decision-makers as they consider mid-century emissions targets, and long-run climate objectives.  相似文献   

18.
Liu  Syalie  Altay  Sacha  Mercier  Hugo 《Climatic change》2022,170(1-2):1-21

As the world’s largest fossil fuels exporter, Russia is one of the key countries for addressing global climate change. However, it has never demonstrated any significant ambitions to reduce greenhouse gas (GHG) emissions. This paper applies ideational research methodology to identify the structural differences in economic, political, and social normative contexts between industrialized fossil fuel importing economies and Russia that lead to the fundamental gap in motivations driving decarbonization efforts. Russia is unlikely to replicate the approach to the green transition and climate policy instruments of energy-importing countries. In order to launch decarbonization in Russia, interested stakeholders need to frame climate policies in Russia differently. Specifically, the framing must address the priority of diversification as a means to adapting the national economy to a new green landscape, the combination of diverse channels for decarbonization, the promotion of energy-efficiency, closer attention to climate-related forest projects, and linkage of climate change with other environmental problems. Moreover, considering Russia’s emissions as a part of the global economic system and shifting from a simplistic national focus on GHG emissions reduction would help coordinate policies through dialogue between exporters and importers of fossil fuel energy-intensive goods, which is essential for the global movement towards a net-zero future.

  相似文献   

19.
综合应用定性与定量分析方法,分析美国宣布退出《巴黎协定》的原因,评估美国退出《巴黎协定》对《巴黎协定》履约前景的影响并提出中国的应对策略。美国宣布退出《巴黎协定》是全球气候治理的重大事件,将对《巴黎协定》的履约产生多重影响,包括将对《巴黎协定》的普遍性构成严重伤害,动摇以《巴黎协定》为核心的国际气候治理体制的基础;将导致《巴黎协定》履约中的领导力赤字问题显著恶化;可能引发不良示范效应,降低国际气候合作信心;将会对其他地区碳排放空间形成不可忽视的挤压,进而推高其他地区碳减排成本;美国大幅削减国际气候援助资金将削弱发展中国家减缓和适应气候变化的能力;美国延迟采取气候行动可能导致全球减排错失最佳时间窗口;美国大幅削减气候变化基础研究经费将对未来全球气候科学研究产生不利影响,进而影响《巴黎协定》履约谈判的权威性等,最后显著加大实现温控目标的难度,甚至导致目标无法实现。就全球气候治理的全局而言,全球气候治理的框架不会坍塌,但确实会受到动摇;全球气候治理的进程不会逆转,但确实会迟滞。美国宣布退出《巴黎协定》使中国面临多重挑战,其中之一是中国面临急剧上升的期望中国承担全球气候治理领导的国际压力。为此,中国对内应实现国家自主贡献的上限目标,对外应积极重建全球气候治理集体领导体制,即用C5取代G2,同时继续努力改变美国对气候变化的消极立场。  相似文献   

20.
国家自主贡献(NDC)是《巴黎协定》最核心的制度,体现了全球气候治理模式从"自上而下"到"自下而上"的变迁.文中对截至2021年7月1日92个缔约方通报或更新的NDC进行了比较分析,识别出7种更新方式:提高量化减排目标数字、调整减排目标类型和覆盖范围、增加适应目标和政策、增加2050年减排愿景、主动适用NDC信息和核算...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号