首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
用积云二维时变模式模拟长沙夏秋季积云并合过程,结果表明:系统性天气积云从生,常产生自然并合,降水量很大;有些可播度大于零的天,积云散在发生,几天自然并合,降水量少,若在附近有一扰动产生积云,并合将使其发展强盛,降水量增加;可播度为零的天气,即使积云相距很近也不合并,而是先后消散,无作业价值。  相似文献   

2.
山地对流云并合形成积层混合云的过程分析   总被引:4,自引:2,他引:4  
本文利用贵阳市气象台2005和2006年5-9月的地面、高空观测和雷达资料等,分析了41次山地对流云并合形成积层混合云的降水过程.研究发现如果分散的多单体对流云若距离较近,则很可能出现大范围地跨接、合并,则有可能形成范围宽广的片状或带状云系,即积层混合云系.云系形成以后在移动的过程中,会将前方不断新生的对流单体合并,从而云系前缘强度增强,云系不断维持.整个系统的生命期往往较分散云团更长,并有可能会形成间歇性或连续性降水.本文分析了山地对流云并合形成积层混合云的一些具体特征.  相似文献   

3.
一次积层混合云降水实例的数值模拟分析   总被引:7,自引:1,他引:7  
于翡  姚展予 《气象》2009,35(12):3-11
观测显示,积层混合云有自己独特的动力热力结构,降水过程也有自己的特点,但过去关于积层混合云的实例模拟工作较少.2007年9月28日在我国华北地区发生了一次积层混合云降水过程.利用WRF-ARW中尺度数值模式,对这一个例进行了实例模拟,并结合常规观测、卫星和雷达资料分析模拟结果,表明:此次积层混合云系是降水云系减弱,层状云发展形成的.在降水物理过程中,此次积层混合云不仅具有积云和层云形态混合的特征,还具有冷云过程和暖云过程共存的相态混合的特征;中层的大范围辐合和相应的较均匀上升气流场支撑着层状云,而在均匀上升气流场中的波动导致了对流云镶嵌其中;有迹象表明,条件对称不稳定是维持此次积层混合云发展的动力因子.  相似文献   

4.
2002年7月沈阳一次降水过程的催化数值模拟研究   总被引:5,自引:1,他引:5  
应用三维对流云模式和探空资料,对沈阳地区2002年7月12日发生的一次东北冷涡降水过程进行了数值模拟研究。结果表明,这次降水主要是由积层混合云引起的,其中冰相过程占主导地位,霰的融化是最主要的雨生成项。催化模拟试验表明,当云体处于成熟稳定的积层混合云阶段,在0℃层高度以上播撒AgI能起到显著的增雨效果。积层混合云具有巨大的人工增雨潜力。  相似文献   

5.
利用中尺度数值模式WRF-ARW(V3.2)对2009年4月18-19日发生在张家口地区的一次积层混合云降水进行了模拟,并结合观测资料从不同尺度对这次降水过程进行了对比分析.结果表明:700 hPa西风槽、850 hPa低涡是影响这次降水的主要天气系统,来自南方的暖湿空气和西北内蒙古低涡带来的水汽是这次降水的主要水汽来源,两股水汽在张家口附近低层出现了大尺度辐合,有利于该地区云系的发展、降水的形成;降水云系呈东北-西南向带状分布,带长约1 000 km,带宽300km,在大片的云带中分布着很多个小的高值中心,中心区域一般在几十千米;结合雷达回波可以看到在均匀的回波层中镶嵌着柱状对流回波,具有典型的积层混合云降水回波特征;沿着雷达回波做剖面,发现云中云水含量分布无论是水平方向还是垂直方向都是不均匀的,雨水的大值中心与上层的霰、雪的大值中心相对应,中心水平范围在1020 km.  相似文献   

6.
积-层混合云是影响北京地区的重要降水云系,运用飞机探测资料结合中尺度数值模式WRF,对2014年9月23日发生在北京地区的一次积-层混合云系的垂直结构和降水机制进行了探测资料分析和数值模拟研究。通过分析云系的雷达回波演变,发现云中的对流泡没有出现爆发式增长,回波在垂直方向上增长不明显,此次过程属于积-层水平混合型云系降水。飞机探测资料分析显示,上、下午探测云系的液态水含量都不高(最大低于1 g/m3);在云系不同高度,飞机探测到的冰晶形状主要有板状、针柱状、辐枝状和不规则状,由于云中过冷水含量相对较低,聚合冰晶的数量明显多于凇附冰晶,冰晶的聚合是云中粒子增长的主要过程。对模拟云系垂直微物理结构和降水粒子的源、汇项分析得到:高层,由凝华产生的冰晶和雪晶在过冷水含量较低的环境中不断聚并、长大并下落,云系中霰的含量很低,增大的冰晶和雪晶下落至0℃层附近融化是产生地面降水的主要机制。此外,融化层附近,雨滴捕获云滴不断长大并下降至地面也是地面降水的另一个重要来源。  相似文献   

7.
李珊 《四川气象》2001,21(2):29-30,38
本文利用胡志晋教授提出的一维时变积云数值模式,输入实际探空资料,地湛江1998年7月15日的一次积云雹过程进行了模拟计算,预报了各种水粒子的比质量和比浓度的变化。  相似文献   

8.
利用多普勒雷达资料和中尺度天气预报模式wRF(Weather Research and Forecasting)模拟结果,对2009年5月9—10日发生在太原及其周边地区的一次积层混合云降水形成过程进行分析。结果表明,在积层混合云的形成初期,局地对流云得到发展,随着其强度不断增强,与周围云发生并合过程(包括局地单体对流的并合、积云团的并合和积层混合云内强中心的并合),形成范围较大的积层混合云云系。局地单体对流和积云团的并合可带来云体的爆发性增长,霰含量、雨水含量大幅增加。积层混合云内强中心的并合对降水强度影响不大,但有利于降水面积扩大。低压倒槽和弱冷锋是此次积层混合云形成和维持的主要影响因素。低压倒槽有利于低层大范围不稳定能量的积累,风向切变有利于近距离云团的发展和并合,山地动力和热力作用有利于局地对流单体、积层混合云内强中心的形成和加强。  相似文献   

9.
东北地区一次积层混合云过程的数值模拟   总被引:1,自引:0,他引:1  
积层混合云是中国主要的降水云型之一,它的动力和热力特征比单一的层状云或对流云都要复杂。利用NCEP的 1°×1°再分析资料,通过WRF模式对东北地区一次典型积层混合云过程进行数值模拟,通过对模拟结果分析并结合实际资料,从热力和动力方面研究了积层混合云的形成过程。结果表明:从稳定性上分析,此次过程属于潜在不稳定型,在积云初始生成时,对流有效位能并不大,假相当位温随着高度递减,有利于对流的发展;在积云嵌入大片层状云的过程中,水汽高低空辐合辐散场的变化起了决定性作用,热力作用为积层混合云过程提供了条件,动力因素起主要作用。  相似文献   

10.
一次夏季东北冷涡中积云发展过程的数值模拟   总被引:3,自引:7,他引:3  
运用中国科学院大气物理所设计开发的三维冰雹云模式,对2002年7月11日至15日期间,发生在中国东北地区的一次由冷涡天气诱发的积云对流变化过程进行三维数值模拟。模拟结果表明:(1)冷涡诱发的积云自然降水呈中小尺度复合体的特征;(2)积云起源于低层暖湿区域里,并由强上升气流抬升到高层,得到充分发展;(3)冷涡中积云同样存在液态水累积区,一般出现在最大上升气流上,其中液态水含量随着积云的发展而变化,冰雹即在此液态水累积区0℃以下的区域内生长;(4)在模拟区域内,模拟出了多个积云单体的并合现象,而后发展为积云团;(5)模拟出的积云形态与雷达回波基本吻合。  相似文献   

11.
一次对流云团合并的卫星等综合观测分析   总被引:1,自引:2,他引:1  
利用FY2C卫星观测反演得到的云物理特征参数,结合雷达、微波辐射计和地面雨量等资料,综合分析了2008年7月17日中国安徽一次强降水过程的云合并特征。结果表明:对流云团发展合并是这次强降水发生的主要原因,同一区域内FY2C卫星反演的云光学厚度、雷达回波以及地面降水的分布演变具有较好的一致性,强降水落区与云光学厚度大值区以及雷达强回波区基本对应;对流云团中的液水分布不均匀,以团块状结构为主,对流云团合并时,常先有云体上部(云顶)的合并,一旦云中不均匀的液水合并,合并部位的云光学厚度迅速增加,地面微波辐射计观测的整层液水含量跃增,地面将会出现强降水;一般降水增强之前云顶抬升,光学厚度增大;若云顶高但光学厚度较小时,地面降水一般不明显,光学厚度与降水的关系更密切;对流云团合并初期,云底由小粒子组成,T-re图上表现为深厚的凝结增长区域,合并时整层云粒子的有效半径增长明显,粒子相态达到混合相态区和冻结层的温度不断升高。  相似文献   

12.
青海省秋季一次对流云人工增雨的数值模拟   总被引:10,自引:3,他引:10  
利用中国气象科学研究院的三维对流云数值模式,模拟了青海省2002年秋季一次对流云过程,分析了青海省秋季对流云云体发展的动力学特点和微物理特征。数值模拟结果表明,青海省秋季的对流云降水几乎全部是由霰的融化形成的,而自然云中冰晶含量少、冰霰自动转化形成霰胚的过程非常微弱。但采用合适的方法催化以后,冰晶的核化、繁生量增加,通过冰霰自动转化过程形成大量霰胚,霰胚再通过其他冷云微物理过程迅速增长,融化成降水。催化后各种微物理机制都比催化前活跃,同时催化改变了云体的动力场分布,在动力过程和微物理过程的相互促进下,使增雨取得了很好的效果。  相似文献   

13.
云滴数浓度影响混合型层状云降水的数值模拟   总被引:1,自引:1,他引:1  
使用耦合了Morrison双参数微物理方案的中尺度WRF模式V2.2,对2008年1月25-29日发生在我国南方的冰雪天气过程进行了数值试验。在模式准确再现了此次天气过程形势演变特点的基础上,对模式微物理方案中云滴数浓度影响累积降水量的情况进行了敏感性试验,发现云滴数浓度对降水量的影响是复杂和非线性的。对此次天气过程中的微物理量进行了详细的分析,并从各种水成物粒子的发展演变上,讨论了云滴数浓度的增加在暖云和冷云两种降水机制上对降水产生的不同影响。结果表明,云滴数浓度越大,云水混合比就越大,云滴的尺度越小。雨滴对不同云滴数浓度的响应与云滴的情况相反,随着云滴数浓度的增加,雨滴数浓度减小,雨水也减少,暖云降水过程受到了抑制;冰晶和雪晶的数浓度的演变过程没有明显变化,而冰晶和雪晶的混合比是相应增加的,冷云降水过程得到了一定程度的增强。从本文模拟的个例来看,设置不同云滴数浓度所得到的总累计降水量的差异在1%以内。总的来说,增加云滴数浓度,降水量会减少。从比例上来看,增加云滴数浓度对暖云降水过程的抑制作用比对冷云降水过程的增强作用更为显著,但是在本文模拟的个例中,冷云降水过程占主导地位,减少的降水和增加的降水的绝对值在同一个量级上并且数值相近,它们相互抵消后得到的结果是降水量变化的绝对值大大减小了,这解释了增加云滴数浓度后模拟的总累积降水量变化不明显的原因。  相似文献   

14.
强对流系统中对流云合并的观测分析   总被引:4,自引:5,他引:4  
翟菁  黄勇  胡雯  蒋年冲  牟容 《气象科学》2011,31(1):100-106
用雷达等观测资料以及LAPS(Local Analysis and Prediction System)中尺度再分析场资料,对2009年6月14日在河南、安徽等地引发冰雹大风天气的两个强对流系统的形成演变过程中的对流云合并现象进行观测分析.研究表明,不论是单体间的合并还是对流系统间的合并,合并后单体或对流系统都有显著的...  相似文献   

15.

根据2013—2014年5—10月西安地区观测得到的雨滴谱数据,结合C波段新一代多普勒天气雷达的观测资料,对西安地区43次积层混合云降水的平均雨滴谱分布、微物理特征量及雷达反射率因子Z和雨强R的关系进行统计分析。结果表明:积层混合云降水的平均雨滴谱呈单峰型,Gamma分布对降水大粒子的拟合明显优于M-P分布;积层混合云中雨滴数浓度最大值及对雨强贡献最大值均出现在雨滴直径小于1 mm的范围内;利用最小二乘法建立了西安地区积层混合云的Z-R关系Z=168R1.43;当雨滴谱数据计算的回波强度小于(大于)30 dBz,雷达对回波强度有明显高估(低估)现象,针对此现象提出了积层混合云雷达回波的5档修正方案;利用Z=168R1.43估算西安积层混合云降水个例的降雨量更接近实测降雨量,估算降雨量的相对误差从51.3%减小到25.4%。

  相似文献   

16.
应用WRF(Weather Research and Forecasting)模式,采用NSSL初始CCN数据(C=600 cm~(-3)、k=0.6)及南京北郊观测拟合数据(C=4 000 cm~(-3)、k=0.47)对安徽省一次强对流天气进行模拟。结果发现CCN浓度(CASE2)增大后,所模拟的最大雷达反射率较初始情况(CASE1),在强度和云体宽度上更加接近实况,且CASE2生成了更多强对流单体;CASE2的降水落区较CASE1更为接近实况,且中心雨强大于CASE1,这主要由CASE2中第一个单体更强的降水导致,而两者第二个单体贡献值相近。在过程初期,CASE2中云水、冰晶粒子数浓度比CASE1更大,使得云水粒子冻结时释放出比CASE1更多的热量,从而使得云体发展更为旺盛;两者单位质量中雪晶质量和数浓度相差不大;CASE2比CASE1霰雹粒子比含水量更高,从而在融化过程中形成了更强的冷云降水。  相似文献   

17.
This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and more and larger precipitation particles. In contrast, in the stratiform cloud region, after the Silver Iodide (AgI) seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号