首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
曹丽娟  张冬峰  张勇 《大气科学》2010,34(4):726-736
使用区域气候模式(RegCM3)和大尺度汇流模型(LRM), 研究土地利用/植被覆盖变化对长江流域气候及水文过程的影响。RegCM3嵌套于欧洲数值预报中心 (ECMWF) 再分析资料ERA40, 分别进行了中国区域在实际植被和理想植被分布情况下两个各15年 (1987~2001年) 时间长度的积分试验。随后, RegCM3 两个试验的输出径流结果分别用来驱动LRM, 研究土地利用/植被覆盖变化对长江流域河川径流的影响。研究结果指出, 中国当代土地利用变化对长江流域降水、蒸散发、径流深及河川径流等水文气候要素的改变较大, 对气温的改变并不明显。土地利用变化引起长江干流河川径流量在夏季(6~8月)有所增加, 并且越向下游增加幅度越大, 其中大通站径流量增加接近15%。总体而言, 土地利用改变加剧了长江流域夏季水循环过程, 使得夏季长江中下游地区降水增多, 径流增大。  相似文献   

2.
土地利用变化对我国区域气候影响的数值试验   总被引:29,自引:0,他引:29  
使用RegCM2区域气候模式单向嵌套澳大利亚CSIRO R21L9全球海-气耦合模式,通过将中国区域植被覆盖由理想状况改变为实际状况的数值试验对比分析,探讨了当代中国土地利用变化对中国区域气候的影响,并对结果进行了统计显著性检验。研究表明,土地利用的变化,会导致我国西北等地区年平均降水减少,导致年平均气温在内陆部分地区升高和在沿海个别地区降低,引起许多地方夏季日平均最高气温升高,而冬季日平均最低气温则在我国东部部分地区降低的同时在西北地区升高,土壤湿度的变化表现为大范围的降低。研究同时表明,相同的土地变化在不同的地理环境下引起的气候要素变化有一定的不一致性。  相似文献   

3.
淮河流域能量与水分循环试验和研究   总被引:2,自引:1,他引:2  
张雁 《气象科技》1998,(4):33-38
淮河流域能量与水分循环试验和研究是国家自然科学基金“九五”重大项目之一,也是中日国际合作研究项目。该项目的实施主要是利用在以淮河流域为中心的广大区域内开展外场观测试验所获得的气象、水文、雷达、卫星遥感等加密观测和特殊观测资料,进一步了解东亚季风区(主要是江淮梅雨区)中尺度降水系统的能量与水循环过程,建立区域气候一水文数值模式及四维资料同化系统,提高梅雨的气候模拟能力。淮河流域能量与水分循环外场观测试验按照项目计划于1998年5月1日正式开始,8月对日结束(部分水文观测项目到9月15日),历时4个月,圆满地完成了观测任务。其中地面、探空、雷达、卫星、水文及多种特殊观测项目进行了加密观测,成功地观测到江淮及淮河流域地区梅雨爆发前后、梅雨期间以及第二次人梅不同天气条件下的重要降水天气系统和过程,捕捉到季风雨带北移和南撤的气候背景条件下,影响江淮和淮河流域的几次强降水天气过程与水文过程,尤其是多尺度梅雨云系条件下的中-β和中-γ尺度能量与水循环过程,为今后的研究工作奠定了基础,达到了项目的预期目标。  相似文献   

4.
为深入认识青藏高原能量和水分循环季节变化,利用GSWP(Global Soil Wetness Project)、GLDAS(Global Land Data Assimilation System)、AMSR-E(Advance Microwave Scanning Radiometer-EOS)土壤湿度以及台站观测资料等多种数据,采用滑动t检验初步分析高原下垫面各物理量季节变化特征。结果表明:各物理量季节变化特征明显且联系密切。高原下垫面净短波辐射和感热通量在1月中旬显著开始增加,5~6月达到全年最高值。净长波辐射5月表现为高值,夏季表现为低值。地表潜热通量在1月显著开始增加,在夏季达到全年最高值。表层土壤3月开始输送热量到大气,9月大气开始向土壤表层传递热量;融雪3~5月加快,雪盖减少。降水和1 cm植被含水量在2月显著开始增加,1 cm土壤显著开始加湿,5~6月降水陡增,1 cm土壤湿度表现为峰值。1 cm植被含水量、植被蒸腾、总蒸散与降水在7~8月达全年最高值,1 cm土壤湿度在7月表出现为谷值,9月达全年第二峰值。10月下垫面温度转冷后,雪盖增加,土壤湿度逐渐减小。  相似文献   

5.
植被冠层截留对地表水分和能量平衡影响的数值模拟   总被引:2,自引:1,他引:2  
尹伊  陈海山 《气象科学》2013,33(2):119-129
利用NCAR_CLM4.0模式,通过有无植被冠层截留的试验对比分析,讨论了植被冠层截留对全球陆面水分和能量平衡产生的潜在影响.结果表明:就全球水分平衡而言,不考虑植被冠层截留时,全球平均土壤总含水量、表面径流和次表面径流增加,蒸散发减少.空间分布特征表明,低纬地区各水分平衡分量全年维持较高的差值分布,并随季节变化沿赤道南北振荡;北半球中高纬高值区有春季扩张、夏季极盛、秋冬季撤退的趋势.冠层截留消失后冠层蒸发的消失是蒸散发减弱的主要原因.对于能量平衡而言,不考虑冠层截留时,全球感热通量增加,冠层感热的增加明显大于地面感热的减少;潜热减少.此外,不同植被类型对不考虑冠层截留后产生的响应存在明显差异.  相似文献   

6.
能量与水分循环——气候研究的热点   总被引:6,自引:0,他引:6  
张雁 《气象》2001,27(9):9-12
主要介绍了能量与水分循环研究的关键科学问题,并介绍了近年来国际和国内开展的一系列大型科学试验计划。这些计划都是以开展大尺度水循环过程、陆面水循环过程、云与降水过程的观测试验为生长点,以分析、了解、模拟大气-陆地-海表的水分和热量交换及循环为研究基础,旨在进一步弄清气候变暖的物理成因和未来气候变化趋势;弄清中国、日本等东亚国家的旱涝形成机理;建立相应的气候模式,提出新的预报方法,从而实现较准确地预测气候变化和大尺度灾害性天气,合理调配水资源之目的。  相似文献   

7.
淮河流域能量与水分循环试验和研究(HUBEX)项目进展   总被引:3,自引:1,他引:3  
张雁 《气象科技》2000,28(1):11-15
1998年是厄尔尼诺现象的次年,长江流域出现了历史上罕见的大洪水。1999年为拉尼娜年,天气形势更为复杂,长江下游地区发生了严重的洪涝灾害。淮河流域能量与水分循环试验正是在这样的气候背景下进行了为期两年的观测试验,获得了圆满成功。试验所获取的大量气象、水文、卫星、雷达、通量等多种常规、加密和特殊的观测资料已补国内外有关科学家使用,取得了重要的研究进展。  相似文献   

8.
朱永  黄土松 《气象科学》1995,15(4):166-182
鉴于水分循环和海冰过程是气候变化研究中两个比较薄弱的环节,而在以往的一些气候模式中往往简化甚至忽略了其中之一,给气候变化的研究带来了一定的不确定性。因此本文设计了一个包含详细水分循环海冰物理过程的二维气候模式,在模拟出极地海冰面积和季节循环基础上,详细研究了存在大气,海洋,海冰以及水份循环中的各种气候因素对海冰季节循环的影响,得到了一些比较有意义的结论:(1)当大气中感热潜热输送加强时,海冰面积减  相似文献   

9.
中国近代土地利用变化对区域气候影响的数值模拟   总被引:26,自引:1,他引:26  
利用国家气候中心改进的高分辨率区域气候模式(RegCM-NCC)模拟研究了中国近代历史时期土地利用/覆盖变化对中国区域气候的影响,模拟结果显示,1700年以来,以森林砍伐、草地退化及相应耕地面积扩大为主的土地利用变化可能对中国区域降水、温度产生了显著影响。1700—1900年期间,由于土地利用的变化使华北、西南等地区降水呈减少趋势,其他区域变化不明显,但近50年来却使长江中下游地区、西北、东北部分地区降水有所增加。1700—1800年间的土地利用变化使得除东北及长江流域地区外的大部分地区温度呈下降趋势,1900年以后有所升高,特别是近50年来中国大部分区域平均气温升高,与这一时期由于大气中温室气体排放浓度增加造成的温度升高相一致。另外,土地利用变化不仅使大气温度、湿度发生变化,还可引起基本流场的变化,使东亚冬、夏季风气流有所增强,这主要是由于植被变化改变了地面温度,使海、陆温差进一步增大的结果。因此,土地利用变化对区域尺度气候变化的影响是不容忽视的。  相似文献   

10.
中国当代土地利用变化对黄河流域径流影响   总被引:4,自引:1,他引:4  
曹丽娟  张冬峰  张勇 《大气科学》2008,32(2):300-308
使用区域气候模式(RegCM3)和大尺度汇流模型(LRM),研究中国地区土地利用/植被覆盖变化对黄河流域降雨径流过程的影响。RegCM3嵌套于欧洲数值预报中心(ECMWF)再分析资料ERA40,分别进行了中国区域在实际植被和理想植被分布情况下两个各15年(1987~2001年)时间长度的积分试验。随后,RegCM3 两个试验的输出径流结果分别用来驱动LRM。与观测资料的对比分析表明,在实际土地利用状况下,LRM能较好地模拟黄河河川径流的季节和年际变化。研究结果指出,当代土地利用引起了冬季黄河上游部分地区降水减少,中下游地区降水增加;引起夏季整个黄河流域降水的减少。总体来说,当代土地利用变化引起黄河流域年平均降水的减少。对于水文站河川径流量,除了冬春季略有增加外,其他月份河川径流均会减少,并且在9月减少最多。土地利用引起的植被退化造成黄河径流的大幅度减少,并且越向下游减少幅度越大,这可能是引起黄河下游断流的重要原因之一。  相似文献   

11.
The effects of vegetation and its seasonal variation on energy and the hydrological cycle were examined using a state-of-the-art Community Atmosphere Model (CAM3). Three 15-year numerical experiments were completed: the first with realistic vegetation characteristics varying monthly (VEG run), the second without vegetation over land (NOVEG run), and the third with the vegetation characteristics held at their annual mean values (VEGMEAN run). In these models, the hydrological cycle and land surface energy budget were widely affected by vegetation. Globaland annual-mean evapotranspiration significantly increased compared with the NOVEG by 11.8% in the VEG run run, while runoff decreased by 13.2% when the realistic vegetation is incorporated. Vegetation plays different roles in different regions. In tropical Asia, vegetation-induced cooling of the land surface plays a crucial role in decreasing tropical precipitation. In middle latitudes and the Amazon region, however, the vegetation-induced increase of evapotranspiration plays a more important role in increasing precipitation. The seasonal variation of vegetation also shows clear influences on the hydrological cycle and energy budget. In the boreal mid-high latitudes where vegetation shows a strong seasonal cycle, evapotranspiration and precipitation are higher in the summer in the VEG run than in the VEGMEAN run.  相似文献   

12.
Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better understanding of the full climate system. Acknowledging the importance of land surface change as a component of climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to environmental change and variability.  相似文献   

13.
在验证CENTURY模型对中国陆地植被净初级生产力(Net Primary Productivity,NPP)模拟能力的基础上,利用该模型探讨了1981-2008年中国陆地植被NPP的年际变异和变化趋势对CO2浓度、温度和降水变化的响应。结果表明,中国陆地植被NPP对不同气候因子的响应程度存在明显不同。其中,CO2浓度变化对植被NPP年际变异的影响不显著,但能够引起中国大部分地区植被NPP趋势系数增大;温度对中国中高纬度地区植被NPP的年际变化影响显著,但就全国范围而言,植被NPP年际变异对温度变化的响应程度总体低于对降水变化的响应程度;降水变化是对中国植被NPP变化趋势起主导作用的气候因子。此外,综合考虑温度和降水变化的影响发现,植被NPP变化趋势的响应特征类似于降水单独变化时植被NPP变化趋势的响应特征。  相似文献   

14.
Impact of land use changes on surface warming in China   总被引:29,自引:1,他引:28  
Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.  相似文献   

15.
Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.
The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.  相似文献   

16.
中国农田下垫面变化对气候影响的模拟研究   总被引:1,自引:0,他引:1  
曹富强  丹利  马柱国 《气象学报》2015,73(1):128-141
使用同期的美国国家环境预报中心/能源部(NCEP/DOE)再分析资料驱动区域气候耦合模式AVIM-RIEMS2.0,从遥感卫星图像资料中获取3期中国土地利用/覆盖数据中的农田植被类型,将其分别引入到AVIM-RIEMS2.0模式进行积分,研究中国农田下垫面变化对东亚区域气候的影响。结果表明:中国农田变化对气候影响具有冬季弱、夏季强的季节性变化,夏季气温和降水的差异在一些地区通过了95%的显著性检验;20世纪80年代农田扩张,林地、草地为主的植被类型转化为农田,植被变化区域的叶面积指数降低,反照率升高,且通过了95%的显著性检验,使得中国东部地区的气温由南到北呈现增加—减少—增加—减少的相间变化趋势,而降水的变化趋势大体相反;20世纪90年代农田面积减少,除东北地区外,农田变化引起的植被变化与80年代基本相反,叶面积指数变化、反照率以及由此导致的气候各要素也呈现大体相反的变化趋势;不同时期农田变化引起的植被类型转化的差异,使850 hPa风场变化趋势基本相反,可能是导致气温和降水变化趋势差异的主要原因之一。  相似文献   

17.
The recent progresses on the reconstruction of historical land cover and the studies on regional climatic effects to temperature,precipitation,and the East Asian Monsoon across China were reviewed.Findings show that the land cover in China has been significantly modified by human activities over the last several thousands years,mainly through cropland expansion and forest clearance.The cropland over traditional Chinese agricultural areas increased from 5.32×105 km2 in the mid-17th century to 8.27×105 km2 in...  相似文献   

18.
受气候增暖和人类活动的双重影响,黄河流域的水循环正在发生显著变化,水资源供需矛盾突出。陆地水循环是一个复杂的非线性系统,为清晰认识水循环变化的全貌,并合理高效利用有限的水资源量,需要综合考虑水循环各个要素之间的协同变化机制。同时,在“人类世”背景下,黄河流域水循环研究必须考虑人类活动的影响,主要包括植被变化和人类用水,其中人类用水主体为农业灌溉。自从实施生态恢复工程以来,黄土高原植被覆盖明显改善的同时也引发了对径流、蒸散发、降水、土壤湿度以及地下水的一系列影响,且研究结论还存在一些争议,但黄土高原植被覆盖改善使得该地区蒸散发量增加基本达成共识,大多数研究支持植被改善减少径流的结论。黄河流域的农业灌溉方式主要为大水漫灌,其对地表蒸散发、地表水及地下水多个过程具有重要影响。本文主要针对黄河流域的水循环研究,讨论相关研究进展以及发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号