首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.  相似文献   

2.
Water and land are the two natural resources restraining crop production in South Africa. With the increasing demand for food, emphasis has shifted from the sole reliance on rain fed crop production, to irrigation. The deterioration in irrigation water quality from surface water sources is, however, posing a big challenge to the sustainability of irrigated crop production. This is because more water is required for leaching, resulting in shallow water tables in agricultural lands. The installation of well designed subsurface drainage systems alone is not enough; the provision of timely maintenance is also necessary. In this study, the extent and severity of problems as a consequence of shallow water tables and their possible causes were investigated at three sugarcane fields in Pongola, South Africa, having low hydraulic conductivity soils. Also investigated were soil salinity levels and the temporal variation in the salinity of the irrigation water. A water table map of a 32 ha sugarcane field was generated, using observed water table depth (WTD) data from 36 piezometers monitored from September 2011 to February 2012. Out of the total 32 ha under cultivation, 12% was found to be affected by shallow WTDs of less than the 1.0 m design WTD. The inability of natural drainage to cope with subsurface drainage needs and the poor maintenance of subsurface drainage systems contributed to the shallow water tables in the area. Furthermore, the currently adopted drainage design criteria also proved unsatisfactory with mean observed water table depth and drainage discharge (DD) of 20% and 50%, respectively, less than their respective design levels. The salinity of the irrigation water was, on average, 32% higher than threshold tolerance level of sugarcane. The root zone soil salinity levels at the three study sites were greater than the 1.7 dS m−1 threshold for sugar cane. The subsurface drainage design criteria adopted at the site needs to be revisited by ensuring that the slope of the land is taken into consideration in the drainage design in addition to adhering to a recommended maintenance schedule.  相似文献   

3.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
Bypass flow in structured soils is dominated by soil hydrological processes, such as rain intensity, initial pressure head of the soil, surface storage of rain, horizontal contact area and absorption rate, and hydraulic conductivity of the soil matrix. This study was conducted to determine the relative impact of these processes in different soil types. A quasi 3-dimensional simulation model was used to calculate the effects of these soil hydrological input parameters on surface infiltration, macropore flow (with related horizontal absorption) and drainage. For light textured soils, surface infiltration was the most important term in the water balance. Heavy textured soils, in contrast, had drainage as the main term. In the latter soils bypass flow, when occurring, was almost equal to the amount of rain applied, indicating that absorption processes were strongly reduced. Lateral absorption on macropore walls was a minor fraction in the total mass balances, due to limited contact area and relatively weak diffusivity forces. Surface infiltration is a crucial parameter in bypass flow and is mainly dependent on rain intensity, initial pressure head and conductivity of the soil matrix. This requires measurement methods for hydraulic conductivity that specifically consider the effect of macropores.  相似文献   

5.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

6.
Soil salt accumulation is a widespread problem leading to diminished crop yield and threatening food security in many regions of the world. The soil salinization problem is particularly acute in areas that lack adequate soil water drainage and where a saline shallow water table (WT) is present. In this study, we present laboratory-scale column experiments, extending over a period of more than 400 days that focus on the processes contributing to soil salinization. We specifically examine the combined impact of soil compaction, surface water application model and water quality on salt dynamics in the presence of a saline shallow WT. The soil columns (60 cm height and 16 cm diameter) were packed with an agricultural soil with bulk densities of 1.15 and 1.34 g/cm−3 for uncompacted and compacted layers, respectively, and automatically monitored for water content, salinity and pressure. Two surface water compositions are considered: fresh (deionized, DI) and saline water (~3.4 mS/cm). To assess the sensitivity of compaction on salt dynamics, the experiments were numerically modelled with the HYDRUS-1D computer program. The results show that the saline WT led to rapid salinization of the soil column due to capillarity, with the salinity reaching levels much higher than that at the WT. However, compaction layer provided a barrier that limited the downwards moisture percolation and solute transport. Furthermore, the numerical simulations showed that the application of freshwater can temporarily reverse the accumulation of salts in agricultural soils. This irrigation strategy can help, in the short-term, alleviate soil salinization problem. The soil hydraulic properties, WT depth, water quality, evaporation demand and the availability of freshwater all play a role in the practicability of such short-term solutions. The presence of a saline shallow WT would, however, rapidly reverse these temporary measures, leading to the recurrence of topsoil salinization.  相似文献   

7.
The numerical simulation of long‐term large‐scale (field to regional) variably saturated subsurface flow and transport remains a computational challenge, even with today's computing power. Therefore, it is appropriate to develop and use simplified models that focus on the main processes operating at the pertinent time and space scales, as long as the error introduced by the simpler model is small relative to the uncertainties associated with the spatial and temporal variation of boundary conditions and parameter values. This study investigates the effects of various model simplifications on the prediction of long‐term soil salinity and salt transport in irrigated soils. Average root‐zone salinity and cumulative annual drainage salt load were predicted for a 10‐year period using a one‐dimensional numerical flow and transport model (i.e. UNSATCHEM) that accounts for solute advection, dispersion and diffusion, and complex salt chemistry. The model uses daily values for rainfall, irrigation, and potential evapotranspiration rates. Model simulations consist of benchmark scenarios for different hypothetical cases that include shallow and deep water tables, different leaching fractions and soil gypsum content, and shallow groundwater salinity, with and without soil chemical reactions. These hypothetical benchmark simulations are compared with the results of various model simplifications that considered (i) annual average boundary conditions, (ii) coarser spatial discretization, and (iii) reducing the complexity of the salt‐soil reaction system. Based on the 10‐year simulation results, we conclude that salt transport modelling does not require daily boundary conditions, a fine spatial resolution, or complex salt chemistry. Instead, if the focus is on long‐term salinity, then a simplified modelling approach can be used, using annually averaged boundary conditions, a coarse spatial discretization, and inclusion of soil chemistry that only accounts for cation exchange and gypsum dissolution–precipitation. We also demonstrate that prediction errors due to these model simplifications may be small, when compared with effects of parameter uncertainty on model predictions. The proposed model simplifications lead to larger time steps and reduced computer simulation times by a factor of 1000. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A small hillslope was chosen to investigate the role of throughflow as a mechanism responsible for the movement of soil water and solutes towards a saline seep and as a source of recharge to a permanent, regional aquifer at depth. The hydraulic properties, chemical characteristics and physical responses of both systems were studied on a deeply weathered, salt-affected hillslope. Additional data were also obtained from other sites in south-western Australia. Regional groundwater flow occurred in a variably textured, deeply weathered material in which the hydraulic conductivity varied from < 0·001 to 0·14m day?1. Perched groundwater flow (throughflow) occurred in the higher permeability (? 1·5 m day?1), near-surface soil materials. Throughflow occurred throughout winter, contributing approximately 530 m3 of fresh (? 160 mg l?1 Cl) water to a saline seep. By contrast, the deep aquifer discharged approximately 1100 m3 of waters with salt concentrations of 2000–6000 mg l?1 Cl. Recharge and discharge rates to and from the deep aquifer, were estimated to be of the order of 5–20 mm a?1 and 50–300 mm a?1 respectively. Saturated conditions existed throughout winter within the seep and the immediately adjacent non-saline area, with up to 60 per cent of the hillslope soils becoming saturated after major rainfall events ( > 20 mm day?1). In the mid-slopes, in particular along a central depression, saturation of the shallow soils caused macropore channel recharge to take place through the clay-textured subsoils. Water-level responses suggest that approximately 25–30 per cent of annual recharge occurred from one storm studied in September 1984. Recharge through macropore channels is a significant mechanism in the concave slope areas on the hillslope. Throughflow was found to be a major source of water, but not salt, contributing to the saline seep. In general, the contribution of throughflow was found to decrease further inland at other sites studied. However, at inland sites where perennial, perched aquifers have developed in deep sands, saline areas have been caused by throughflow and not by deep aquifer discharge.  相似文献   

9.
Hydraulic redistribution defined as the translocation of soil moisture by plant root systems in response to water potential gradients is a phenomenon widely documented in different climate, vegetation, and soil conditions. Past research has largely focused on hydraulic redistribution in deep tree roots with access to groundwater and/or winter rainfall, while the case of relatively shallow (i.e., ≈1–2 m deep) tree roots has remained poorly investigated. In fact, it is not clear how hydraulic redistribution in shallow root zones is affected by climate, vegetation, and soil properties. In this study, we developed a model to investigate the climate, vegetation, and soil controls on the net direction and magnitude of hydraulic redistribution in shallow tree root systems at the growing season to yearly timescale. We used the model to evaluate the effect of hydraulic redistribution on the water stress of trees and grasses. We found that hydraulic lift increases with decreasing rainfall frequency, depth of the rooting zone, root density in the deep soil and tree leaf area index; at the same time for a given rainfall frequency, hydraulic lift increases with increasing average rainstorm depth and soil hydraulic conductivity. We propose that water drainage into deeper soil layers can lead to the emergence of vertical water potential gradients sufficient to explain the occurrence of hydraulic lift in shallow tree roots without invoking the presence of a shallow water table or winter precipitation. We also found that hydraulic descent reduces the water stress of trees and hydraulic lift reduces the water stress of grass with important implications on tree–grass interactions.  相似文献   

10.
Agricultural subsurface drainage waters containing nutrients (nitrate/phosphate) and pesticides are discharged into neighboring streams and lakes, frequently producing adverse environmental impacts on local, regional, and national scales. On‐site drainage water filter treatment systems can potentially prevent the release of agricultural contaminants into adjacent waterways. Zero valent iron (ZVI) and sulfur‐modified iron (SMI) are two types of promising filter materials that could be used within these treatment systems. Therefore, water treatment capabilities of three ZVI and three SMI filter materials were evaluated in the laboratory. Laboratory evaluation included saturated falling‐head hydraulic conductivity tests, contaminant removal batch tests, and saturated solute transport column experiments. The three ZVI and the three SMI filter materials, on average, all had a sufficient hydraulic conductivity greater than 1 × 10–3 cm/s. Batch test results showed a phosphate decrease of at least 94% for all tests conducted with the ZVI and SMI. Furthermore, the three SMI filter materials removed at least 86% of the batch test nitrate originally present, while batch tests for one of the ZVI filter materials exhibited an 88% decrease in the pesticide, atrazine. Saturated solute transport column experiments were carried on the best ZVI filter material, or the best SMI filter material, or both together, in order to better evaluate drainage water treatment effectiveness and efficiency. Results from these column tests additionally document the drainage water treatment ability of both ZVI and SMI to remove the phosphate, the ability of SMI to remove nitrate, and the ability of a select ZVI material to remove atrazine. Consequently, these findings support further investigation of ZVI and SMI subsurface drainage water treatment capabilities, particularly in regard to small‐ and large‐scale field tests.  相似文献   

11.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
lINTR0DUCTIONSoiler0si0ncanbeaseriousproblemonsl0pinguplands0fthes0uthemUnitedStatesthatareintensivelycr0pped.Conservati0nprovisionsofthel985U.S.FarmBillmandateddevelopmentofaconservati0nplanonhighlyer0diblelands.Researchwasinitiatedinl9870na28-haareaattheA-E.Nels0nFarrninn0rthernMississippit0determineiftheconservati0nprovisionscouldbeachievedwhileprofitablygr0wingrowcropsincludingcott0n(GosSyPiumhirsutumL.),soybean(GlyciDemax(L.)Merr.),sorghum(SOrghumbicolor(L.)Moench),c0rn(Zeam…  相似文献   

13.
14.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Recent decades have seen rapid intensification of cattle production in semi-arid savannah ecosystems, increasingly on formalized ranch blocks. As a result, vegetation community changes have occurred, notably bush encroachment (increased bush dominance) in intensively grazed areas. The exact causes of this vegetation change remain widely debated. Previous studies have suggested: (i) increased leaching of water and nutrients into the subsoil in intensively grazed areas provides deeper rooting bush species with a competitive advantage for soil water and nutrients, and (ii) nutrient leaching may be exacerbated by nutrient inputs from cattle dung and urine. Our research in the Eastern Kalahari showed that in infertile sandy soils both the magnitude of soil water and concentration of soil nutrients leached into the subsoil is largely unaffected by the ecological and biochemical effects of increased cattle use. We found that despite the high soil hydraulic conductivity ( &greaterno;12 cm h−1), relatively high subsoil moisture contents and the restriction of water movement to matrix flow pathways prevent leaching losses beyond the rooting zone of savannah grass species. No significant differences in patterns of soil water redistribution were noted between bush dominant and grass dominant sites. We also found that the low nutrient status of Kalahari soils and leachate movement as matrix flow combine to allow nutrient adsorption on to soil particles. Nutrient adsorption ensures that nitrogen and phosphorus cycling remains topsoil dominated even following the removal of vegetation and direct nutrient inputs in cattle dung and urine. This conclusion refutes environmental change models that portray increases in the leaching of soil water and available nitrogen as a major factor causing bush encroachment. This provides a possible explanation for the now widely cited, but hitherto unexplained, resilience of dryland soils. We suggest that infertile sandy soils appear resilient to changes in soil water distribution and nutrient availability caused by increased cattle use. Hence, soil characteristics contribute to the resilience to permanent ecological change that is increasingly recognized as an attribute of semi-arid rangelands. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Tile drainage water temperatures and discharge rates were measured in five highland watersheds of which most are underlain by acid crystalline rock. One of them, Dehtá?e in the Bohemo‐Moravian highland (Czech Republic), was studied in greater detail. The aim was to evaluate water temperature monitoring as a means of determining the source and pathway of drainage runoff during high‐flow events. Rapid increase in drainage discharge was accompanied by rapid change in water temperature. In winter, the rising limb of the hydrograph was accompanied by a decrease in temperature, and the falling limb was associated with a corresponding temperature increase. In summer, the trends were reversed. These data suggest that the water temperature changes are caused by the fastest component of drainage runoff, water from a precipitation event or snowmelt, which can be separated from the remainder of the hydrograph. Measurements of hydraulic conductivity, soil moisture content, soil temperature, and groundwater table level indicate that the major portion of the event water causing this effect infiltrates in the watershed recharge zone where soils are permeable, enters the weathered bedrock, flows preferentially and rapidly down the slope along disjoint fissures in the bedrock, finally emerging as ascending springs, and is, for the most part, intercepted by the tile drainage systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

19.
Methods of estimation of the location of a sharp fresh water–salt water interface with hydraulic heads or pressures are relatively simple and are widely used. Progress has been made in the recent decade toward the mathematical relations describing the position of the sharp interface using hydraulic heads or pressures in coastal zones. This paper reviews several methods for estimation of the location of fresh water–salt water interface in coastal aquifers, including the classical Ghyben–Herzberg relation. The location of the fresh water–salt water interface in a coastal homogeneous, isotropic unconfined aquifer can be estimated based on piezometric heads at two points in the same vertical line tapping, respectively, the salt water zone (including the interface) and the fresh water zone (from the water table to the interface) when the groundwater flow system is in a steady state and satisfies the Dupuit assumption. If pressures are measured at two points in the fresh water and salt water zones in the same vertical line in the coastal aquifer under the same assumption, then the position of the interface can still be estimated with the pressure data. If the Dupuit assumption is not met in coastal aquifers and the vertical fresh water head gradients can be approximated with a straight line, the position of the interface can roughly be estimated by using the water level data in a partially penetrating well during drilling of the well.  相似文献   

20.
We investigated submarine ground water discharge and salt water-fresh water interactions at two locations along the shoreline of the Upper Gulf of Thailand to evaluate mechanisms of water and material transport into the coastal zone. Our data set illustrates the value of using a combined approach consisting of automatic seepage meters to monitor flow rates while assessing the conductivity (salinity) of the subterranean fluids via remote resistivity measurements. Negative correlations between electric conductivities of fluids measured directly inside seepage meter chambers and the remotely assessed resistivities of subsurface pore water show that such measurements may evaluate the spatial distribution of flow rates as well as the subterranean water quality in the coastal zone. Combined seepage and resistivity measurements may thus provide a more complete understanding of coastal ground water dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号