首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrological model sensitivity to climate change can be defined as the response of a particular hydrological model to a known quantum of climate change. This paper estimates the hydrological sensitivity, measured as the percentage change in mean annual runoff, of two lumped parameter rainfall-runoff models, SIMHYD and AWBM and an empirical model, Zhang01, to changes in rainfall and potential evaporation. These changes are estimated for 22 Australian catchments covering a range of climates, from cool temperate to tropical and moist to arid. The results show that the models display different sensitivities to both rainfall and potential evaporation changes. The SIMHYD, AWBM and Zhang01 models show mean sensitivities of 2.4%, 2.5% and 2.1% change in mean annual flow for every 1% change in mean annual rainfall, respectively. All rainfall sensitivities have a lower limit of 1.8% and show upper limits of 4.1%, 3.4% and 2.5%, respectively. The results for potential evaporation change are −0.5%, −0.8% and −1.0% for every 1% increase in mean annual potential evaporation, respectively, with changes rainfall being approximately 3–5 times more sensitive than changes in potential evaporation for each 1% change in climate. Despite these differences, the results show similar correlations for several catchment characteristics. The most significant relationship is between percent change in annual rainfall and potential evaporation to the catchment runoff coefficient. The sensitivity of both A and B factors decreases with an increasing runoff coefficient, as does the uncertainty in this relationship. The results suggest that a first-order relationship can be used to give a rough estimate of changes in runoff using estimates of change in rainfall and potential evaporation representing small to modest changes in climate. Further work will develop these methods further, by investigating other regions and changes on the subannual scale.  相似文献   

2.

月球深部断裂是研究月球早期应力场演化和动力机制的一类重要构造.本文基于GRAIL月球重力数据计算了全月布格重力梯度,在此基础上对月球深部断裂进行了全球绘制,共识别月球深部断裂226条.计算了断裂的长度和走向等基本参数,断裂总长度达到37137 km,平均长度为164 km.统计月球深部断裂在不同范围内的分布情况,发现多数断裂分布在月球的中低纬度地区,且北半球的断裂多于南半球.此外,大型月海集中区所在的纬向带断裂分布最多,断裂经向分布最多的区域为风暴洋的西侧.从全球尺度和不同经纬度带绘制断裂走向玫瑰花图,总体上月球全球尺度上的深部断裂表现出NE-SW和NW-SE的优势走向,不同经度带断裂的优势走向变化不明显,但在纬度带上有显著的变化.南北半球的中纬度带和高纬度带具有相同的优势走向,分别为NE-SW和NW-SE、E-W,在低纬度带的优势走向有所差异,分别是南半球的NE-SW和NW-SE以及北半球的N-S.

  相似文献   

3.
The subsurface spatial variation in clay soils, such as thin-layered sand seams, affects the mechanical strength and electrical resistivity. The objective of this study is the development and application of cone resistivity penetrometer (CRP), which measures the cone tip resistance, sleeve friction, and electrical resistivity to evaluate the subsurface spatial variability. The electrical resistivity is measured at the cone tip to increase its resolution. Two outer diameters of the cone resistivity penetrometers (CRPs) are developed: D=10 mm CRP with a projected area of 0.78 cm2 and D=15 mm CRP with a projected area of 1.76 cm2. The cone tip resistance is effectively separated using a friction sleeve. Strain gauges are used to measure the mechanical strength, and coaxial type electrodes monitor the electrical resistivity. The application tests in the laboratory are conducted using layered soils and saturated sands. In addition, the penetration tests in the field are carried out and compared with the standard piezocone test. The penetration tests show that the soil layers and the density changes are clearly detected by the electrical resistivity and mechanical strength. Field tests show that CRP clearly evaluates the subsurface profile. This study suggests that CRP may be a useful technique for the evaluation of subsurface spatial variability during penetration testing.  相似文献   

4.
利用主动震源监测地下介质衰减特性变化   总被引:1,自引:1,他引:0       下载免费PDF全文
监测地下介质物性动态变化对于研究地震的孕育发生过程具有重要意义. 汶川地震发生后, 在汶川地震主断裂带东北端的陕西省宁强县, 建立了一套主动震源观测系统,利用电动落锤作震源对断裂带开展了近一个月的连续监测实验. 利用主动震源激发波形的高度可重复性, 用谱比法计算了浅层地下介质衰减参数t*随时间的变化, 并与波速和大气压变化进行了对比分析. 结果显示, 由未固结的沉积层和破碎岩石组成的断裂带地震波衰减强,品质因子为10左右;衰减参数t*与大气压的变化有很好的相关性, 并与波速随大气压的变化趋势一致, 可能是由于大气压变化导致浅层介质的裂隙密度变化引起的;强余震引起显著的t*的同震变化及震后各接收台站的不同变化趋势. 野外实验表明, 主动震源是一种监测地下介质物性变化的有效方法.   相似文献   

5.
The impact of three-dimensional subsurface heterogeneity in the saturated hydraulic conductivity on hillslope runoff generated by excess infiltration (so-called Hortonian runoff) is examined. A fully coupled, parallel subsurface–overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty in spatial structure. A large number of cases are simulated in a parametric manner with the variance of the hydraulic conductivity varied over orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical representations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show that three-dimensional stochastic representations of the subsurface hydraulic conductivity can create shallow perching, which has an important effect on runoff behavior that is different than previous two-dimensional analyses. The simple theories are shown to be very poor predictors of the fraction of saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales (∼30) and not achieved for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity.  相似文献   

6.
In this paper, modal parameters of a layered soil system comprising of a soft clay layer overlying a dense sand layer are identified from accelerometer recordings in a centrifuge test. For the first time, the subspace state space system identification (4SID) method was employed to identify the natural frequencies, damping ratios, and complex valued mode shapes while considering the non-proportional damping in a soil system. A brief review of system identification concepts needed for application of the 4SID techniques to structural modal identification is provided in the paper. The identified natural frequencies were validated against those estimated by transfer function spectra. The computed normal mode shapes were compared with closed-form solutions obtained from the one-dimensional shear wave propagation equation. The identified modal parameters were then employed to synthesize state space prediction models which were subsequently used to simulate the soil response to three successive base motions. The identified models captured acceleration time-histories and corresponding Fourier spectra reasonably well in the small and moderate shaking events. In the stronger third shaking event, the model performed well at greater soil depths, but was less accurate near the surface where nonlinearities dominated.  相似文献   

7.
8.
9.
Seasonal water storage in high-elevation alpine catchments are critical sources of water for mountainous regions like the western U.S. The spatial distribution of snow in these topographically complex catchments is primarily governed by orography, solar radiation, and wind redistribution. While the effect of solar shading is relatively consistent from year-to-year, the redistribution of snow due to wind is more variable – capable of producing snowpacks that have varying degrees of uniformity across these hydrologically-important catchments. A reasonable hypothesis is that a warmer climate will cause snowfall to become more dense (i.e. wetter and heavier), possibly leading to less wind redistribution and thus produce a more uniformly distributed snowpack across the landscape. In this study, we investigate the role of increasingly uniform spatial snowpack distributions on streamflow generation in the Green Lakes Valley Niwot Ridge Long Term Ecological Research station, within the headwaters of the Boulder Creek watershed in Colorado. A set of idealized hydrologic simulation experiments driven by reconstructed snowpacks spanning 2001–2014 show that more a more uniform spatial snowpack distribution leads to an earlier melt-out of 31 days on average and tends to produce less total streamflow, with maximum decreases as large as 7.5%. Isolating the role of snowpack heterogeneity from melt-season precipitation, we find that snowpack uniformity reduces total streamflow by as much as 13.2%. Reductions in streamflow are largely explained by greater exposure to solar radiation in the uniformly distributed case relative to a more heterogeneous snowpack, with this exposure driving shifts towards earlier snowmelt and changes in soil water storage. Overall, we find that the runoff efficiency from shallower snowpacks is more sensitive to the effects of uniformity than deeper snowpacks, which has potential implications for a warming climate where shallower snowpacks and enhanced sensitivities may be present.  相似文献   

10.

瞬变电磁三维正演在内存占用和求解时间上都是大的挑战.瞬变电磁响应受到发射波形的影响, 正演计算中还需考虑发射波形.基于重启多项式Krylov子空间模型降阶方法, 本文实现了一种新的全波形瞬变电磁三维正演算法.采用规则六面体网格的拟态有限体积方法对全波形控制方程进行空间离散, 引入一阶φ函数推导得到全时段响应的统一表达式, 利用重启多项式Krylov子空间算法求解φ函数表达式, 对于给定的重启子空间维度, 基于残差公式得到满足给定精度的任意时刻的正演响应.该算法内存占用小, 不需要求解大型线性方程组, 内存占用主要由空间离散网格数量和重启子空间维度决定.数值模型正演结果验证了本文算法的有效性.

  相似文献   

11.
As an important part of agricultural drought risk, agricultural drought vulnerability helps effectively prevent and alleviate drought impacts by quantifying the vulnerability as well as identifying its spatial distribution characteristics. In this study, global agricultural cultivation regions were chosen as the study area; six main crops(wheat, maize, rice, barley, soybean,sorghum) were selected as the hazard-affected body of agricultural drought. Then, global vulnerability to agricultural drought was assessed at a 0.5° resolution and finally, its distribution characteristics were revealed. The results indicated that the area percentages of different grades of global vulnerability to agricultural drought from low to very high were 38.96%, 28.41%,25.37%, and 7.26%, respectively. This means that the total area percentage of high and very high vulnerability zones exceeded30% of the study area. Although high and very high vulnerability zones were mainly distributed in arid and semi-arid regions,approximately 40% of those above were distributed in humid and semi-humid regions. In addition, only about 15% of the population in this study was located in the high vulnerability regions. Among the vulnerability factors, water deficit during the growing season and the irrigation area ratio are the key factors affecting regional vulnerability. Therefore, the vulnerability could be reduced by adjusting crop planting dates and structures as well as by improving irrigation level and capacity.  相似文献   

12.
In the Australian landscape larg stores of soluble salt are present naturally. In many cases it is attributable to salts entrapped as marine sediment in earlier geological time. At the district level, the need for information on the presence of saline subsurface material is increasing, particularly for its application to salinity hazard assessment and environmental management. This is the case in irrigated areas, where changes in hydrology can result in secondary salinisation. To reduce the expense, environmental studies use a regression relationship to make use of more readily observed measurements (e.g. electromagnetic (EM) data) which are strongly correlated with the variable of interest. In this investigation a methodology is outlined for mapping the spatial distribution of average subsurface (6–12 m) salinity (ECe — mS m? 1) using an environmental correlation with EM34 survey data collected across the Bourke Irrigation District (BID) in the Darling River valley. The EM34 is used in the horizontal dipole mode at coil configurations of 10 (EM34-10), 20 (EM34-20), and 40 (EM34-40). A multiple-linear regression (MLR) relationship is established between average subsurface ECe and the three EM34 signal data using a forward modeling stepwise linear modeling approach. The spatial distribution of average subsurface salinity generally reflects the known surface expression of point-source salinisation and provides information for future environmental monitoring and natural resource management. The generation of EM34 data on various contrived grids (i.e. 1, 1.5, 2. 2.5 and 3 km) indicates that in terms of accuracy, the data available on the 0.5 (RMSE = 188) and 1 km (RMSE = 283) grid are best, with the least biased predictions achieved using 1 (ME = ? 1) and 2 km (ME = 12) grids. Viewing the spatial distribution of subsurface saline material showed that the 0.5 km spacing is optimal, particularly in order to account for short-range spatial variation between various physiographic units. The Relative Improvement (RI) shows that increasing EM grids from 1, 1.5, 2, 2.5 to 3 km gave RI of ? 53, ? 100%, ? 107%, ? 128% and ? 140%, respectively. We conclude that at a minimum a 1 km grid is needed for reconnaissance EM34 surveying.  相似文献   

13.
ABSTRACT

The spatial-temporal variation of runoff in an inland basin is very sensitive to climate change. Investigation of runoff change in arid areas is typically limited by lack of meteorological and hydrogeological data. This study focused on runoff change in the Yarkand River source area of the Tarim Basin, China, with the aim of analysing the influence of climate change on the response characteristics of discharge. Sensitivity analysis was introduced to reflect the degree of influence of climate on runoff. Based on the sensitivity factors, over 30 sets of schemes including the IPCC Fourth Assessment Report were simulated using the MIKE 11/NAM rainfall–runoff model and the response of runoff was analysed. The results indicate that there are significant correlations and synchronous fluctuations between runoff and precipitation, evaporation and temperature. The characteristics of the sensitivity of runoff can be fitted well by Bi-Gaussian functions. The functions show that high sensitivity indexes mainly appear in the interval of 165 ± 100 m3 s-1. The influence of precipitation on runoff is greater than that of other climate factors. Through simulation using the NAM model, we found that change of annual runoff was related to the initial climate condition. Annual runoff will have an increasing trend if it has a strong sensitivity to the initial meteorological condition. Moreover, the runoff decreases linearly with evaporation. Also it has a positive relationship with temperature and precipitation. Across the four seasons, the impact in summer and winter is greater than that in spring and autumn. Estimation of the spatial-temporal influence of climate on runoff could provide insight for water resource development in arid areas.
Editor Z.W. Kundzewicz Associate editor not assigned  相似文献   

14.
The generalization of the parameters of rainfall–runoff models, to enable application at ungauged sites, is an important and ongoing area of research. This paper compares the performance of three alternative methods of generalization, for two parameter‐sparse conceptual models (PDM and TATE), specifically for use in flood frequency estimation using continuous simulation. Two of the methods are based on fitting regression relationships between catchment properties and calibrated parameter values, using weighted or sequential regression (with weights based on estimates of calibration uncertainty), and the third is based on the use of pooling groups, defined through measures of site‐similarity based on catchment properties. The study uses a relatively large sample of catchments in Britain. For the PDM, the site‐similarity method performs best, but not greatly better than either regression method, so there may be cases where the use of regression would be preferable. For the TATE model, weighted regression performs best (with a very similar level of performance to that of the PDM with site‐similarity), whereas site‐similarity performs worst (due to poor performance for catchments with higher baseflow), indicating that the choice of model and generalization method should not be separated. The use of sequential regression, which was developed to try to allow for parameter interdependence, shows no clear advantage for either model. Other than the poor performance of the TATE model with site‐similarity for catchments with a higher baseflow index, there are no clear relationships between performance of any model/method and catchment type. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.

目前地表矿、浅部矿越来越少,寻找深部盲矿体变得尤为重要.可控源音频大地电磁法(CSAMT)具有抗干扰能力强、分辨率高等特点,在探测矿产资源中已经取得了较好效果,但是通常CSAMT在矿区找深部矿时,由于在巷道上方的地表接收电磁信号会受到地面不同类型的强电磁干扰,同时由于该方法对深部矿体分辨率较低的缘故,大大影响了CSAMT的应用效果.本文尝试将CSAMT的接收系统置于巷道中,使得接收系统更加接近地下目标体,期望提高对于目标体识别的准确性,保证资源勘查的工作效率和成功率.基于积分方程法对不同类型地质模型进行了CSAMT正演模拟,并对不同模型不同深度接收的CSAMT响应特征进行了分析,同时以MARE2DEM软件模拟的二维模型响应加以验证积分方程结果的正确性.结果表明在无电磁干扰条件下,在巷道接收到的电磁场信号虽弱于地面,但其对于深部盲矿或目标体具有较强的识别度.

  相似文献   

16.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Investigationoftheelectricalconductivitybe┐neathChinausinggeomagneticspatialgradi┐entmethodGUO-HUAFAN(范国华)TONG-QIYAO(姚同起)ZUO...  相似文献   

18.
Hydrological and sediment fluxes were monitored for a 1 yr period in a tropical headwater catchment where a 3 yr old logging road caused substantial Hortonian overland flow (HOF) and intercepted subsurface flow (ISSF). On a 51·5 m road section, ISSF became an increasingly important component of total road runoff, up to more than 90% for large storms. The proportion of ISSF contributed by road cuts along more or less planar slopes compared with ISSF from a zero‐order basin (convergent slopes) truncated by the road declined with increasing rainfall. During the monitored storms that generated ISSF along the road, on average, 28% of sediment export and 79% of runoff from the road section were directly attributable to ISSF. Estimates of total sediment export from the road surface (170 t ha?1 yr?1) and suspended sediment export from the logging‐disturbed catchment (4 t ha?1 yr?1) were exceptionally high despite 3 yr of recovery. ISSF caused not only additional road‐generated sediment export, but also exacerbated HOF‐driven erosion by creating a poor foundation for vegetation recovery on the road surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Journal of Seismology - Microtremor array measurements, and passive surface wave methods in general, have been increasingly used to non-invasively estimate shear-wave velocity structures for...  相似文献   

20.
Hongyan Li  Miao Xie  Shan Jiang 《水文研究》2012,26(18):2827-2837
Mid‐ to long‐term runoff forecasting is important to China. Forecasting based on physical causes has become the trend of this field, and recognition of key factors is central to recent development. Here, global sensitivity analysis based on back‐propagation arithmetic was used to calculate the sensitivity of up to 24 factors that affect runoff in the Nenjiang River Basin. The following five indices were found to be key factors for mid‐ to long‐term runoff forecasting during flood season: Tibetan Plateau B, index of the strength of the East Asian trough, index of the area of the northern hemisphere polar vortex, zonal circulation index over the Eurasian continent and index of the strength of the subtropical high over the western Pacific. The hydrological climate of the study area and the rainfall–runoff laws were then analysed in conjunction with its geographical position and topographic condition. The rationality of the results can be demonstrated from the positive analysis point of view. The results of this study provide a general method for selection of mid‐ to long‐term runoff forecasting factors based on physical causes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号