首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier–Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. © 2012 Elsevier Science. All rights reserved.  相似文献   

2.
Characterizing the pore space of rock samples using three‐dimensional (3D) X‐ray computed tomography images is a crucial step in digital rock physics. Indeed, the quality of the pore network extracted has a high impact on the prediction of rock properties such as porosity, permeability and elastic moduli. In carbonate rocks, it is usually very difficult to find a single image resolution which fully captures the sample pore network because of the heterogeneities existing at different scales. Hence, to overcome this limitation a multiscale analysis of the pore space may be needed. In this paper, we present a method to estimate porosity and elastic properties of clean carbonate (without clay content) samples from 3D X‐ray microtomography images at multiple resolutions. We perform a three‐phase segmentation to separate grains, pores and unresolved porous phase using 19 μm resolution images of each core plug. Then, we use images with higher resolution (between 0.3 and 2 μm) of microplugs extracted from the core plug samples. These subsets of images are assumed to be representative of the unresolved phase. We estimate the porosity and elastic properties of each sample by extrapolating the microplug properties to the whole unresolved phase. In addition, we compute the absolute permeability using the lattice Boltzmann method on the microplug images due to the low resolution of the core plug images. In order to validate the results of the numerical simulations, we compare our results with available laboratory measurements at the core plug scale. Porosity average simulations for the eight samples agree within 13%. Permeability numerical predictions provide realistic values in the range of experimental data but with a higher relative error. Finally, elastic moduli show the highest disagreements, with simulation error values exceeding 150% for three samples.  相似文献   

3.
基于微CT技术的砂岩数字岩石物理实验   总被引:10,自引:2,他引:8       下载免费PDF全文
数字岩石物理技术可弥补传统岩石物理实验的诸多不足,为岩石物理学研究提供一个新平台.本文以常规砂岩为研究对象,利用微CT扫描结合先进的图像处理技术建立了具有真实孔隙结构特征的三维数字岩芯模型;应用Avizo软件内含的多种形态学算法进行数字岩芯孔隙结构量化及表征研究,统计获取了孔隙度、孔隙体积分布及孔径分布特征,建立了等价孔隙网络模型;将Avizo与多场耦合有限元软件Comsol完美对接,实现了孔隙尺度的渗流模拟并计算获得绝对渗透率,对于考虑固相充填孔隙的情况,模拟计算了岩石有效弹性参数,并与近似Gassmann方程良好验证.本文所提出的将Avizo与Comsol结合使用的方法丰富了现有的数字岩石物理研究手段,为其大规模发展提供了一条新途径.  相似文献   

4.
We present the results of a pore-scale experimental study of residual trapping in consolidated sandstone and carbonate rock samples under confining stress. We investigate how the changes in wetting phase flow rate impacts pore-scale distribution of fluids during imbibition in natural, water-wet porous media. We systematically study pore-scale trapping of the nonwetting phase as well as size and distribution of its disconnected globules. Seven sets of drainage-imbibition experiments were performed with brine and oil as the wetting and nonwetting phases, respectively. We utilized a two-phase miniature core-flooding apparatus integrated with an X-ray microtomography system to examine pore-scale fluid distributions in small Bentheimer sandstone (D = 4.9 mm and L = 13 mm) and Gambier limestone (D = 4.4 mm and L = 75 mm) core samples. The results show that with increase in capillary number, the residual oil saturation at the end of the imbibition reduces from 0.46 to 0.20 in Bemtheimer sandstone and from 0.46 to 0.28 in Gambier limestone. We use pore-scale displacement mechanisms, in-situ wettability characteristics, and pore size distribution information to explain the observed capillary desaturation trends. The reduction was believed to be caused by alteration of the order in which pore-scale displacements took place during imbibition. Furthermore, increase in capillary number produced significantly different pore-scale fluid distributions during imbibition. We explored the pore fluid occupancies and studied size and distribution of the trapped oil clusters during different imbibition experiments. The results clearly show that as the capillary number increases, imbibition produces smaller trapped oil globules. In other words, the volume of individual trapped oil globules decreased at higher brine flow rates. Finally, we observed that the pore space in the limestone sample was considerably altered through matrix dissolution at extremely high brine flow rates. This increased the sample porosity from 44% to 62% and permeability from 7.3 D to 80 D. Imbibition in the altered pore space produced lower residual oil saturation (from 0.28 to 0.22) and significantly different distribution of trapped oil globules.  相似文献   

5.
A comparison of advective displacement probability distributions (flow propagators) obtained by nuclear magnetic resonance (NMR) experiment with both lattice Boltzmann (LB) and pore network (PN) simulations is presented. Here, we apply all three methods to the exact same sample for the first time: we consider water transport in a Bentheimer sandstone. The LB and PN simulations are based on X-ray micro-tomography (XMT) images of a small rock sample; the NMR experiments are conducted on a much larger rock core-plug from which the small rock sample originated. Despite the limited size of the simulation domains, good agreement is achieved between all three sets of results, verified quantitatively by comparison of the low order moments of the flow propagators. We are concerned primarily with validating the simulations at high liquid flow rates (>10 ml min−1) in high permeability sandstone, ultimately for future application to geological carbon sequestration studies. Under these conditions the LB simulation is found, as expected, to be more robust than the PN model due primarily to the reduced requirement to manually tune the simulation lattice to match the petro-physical properties of the rock.  相似文献   

6.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A laboratory salt weathering experiment was performed using five salts to attack eight types of rocks to determine the relative significance of rock durability and salt aggressivity to salt crystallization damage. The influence of individual rock properties on the salt susceptibility of the rocks was also evaluated. To study the relation between pore characteristics, salt uptake, and damage, the pre‐ and post‐experiment pore size distributions of the rocks were also examined. It is observed that both salt type and rock properties influenced the damage pattern. The durability ranking of the rocks became significantly altered with the salt type while the variation in salt efficacy ranking with rock type was less pronounced. Of the five salts used, sodium chloride and aluminium sulfate were invariably ineffective with all rock types while sodium carbonate, sodium sulfate, and magnesium sulfate, were markedly more effective in damaging most types of rock used. Of the rock properties investigated, the microporosity (of pores smaller than 0·05 or 0·1 µm) showed the most significant influence on deterioration of the rocks associated with salt crystallization, whereas microporosity of pores smaller than 5 µm played a more important role in salt uptake. Pore size distribution was thus the key factor controlling salt uptake and damage. Rocks with a large number of pores (<5 µm) and a high proportion of pores (<0·05 or 0·1 µm) were particularly susceptible to salt crystallization damage. However, anomalies arose that could not be explained in terms of rock properties or salt efficacy alone. Overall, the relative influences of salt type/efficacy and rock type/properties on salt damage propensity were not clear enough to draw a reasonable conclusion. Salt crystallization damage appears to be influenced by the individual interactions between salts and rocks, which could explain the anomalous results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The multi-phase flow of liquid/supercritical CO2 and water (non-wetting and wetting phases, respectively) in a two-dimensional silicon micromodel was investigated at reservoir conditions (80 bar, 24 °C and 40 °C). The fluorescent microscopy and microscopic particle image velocimetry (micro-PIV) techniques were combined to quantify the flow dynamics associated with displacement of water by CO2 (drainage) in the porous matrix. To this end, water was seeded with fluorescent tracer particles, CO2 was tagged with a fluorescent dye and each phase was imaged independently using spectral separation in conjunction with microscopic imaging. This approach allowed simultaneous measurement of the spatially-resolved instantaneous velocity field in the water and quantification of the spatial configuration of the two fluid phases. The results, acquired with sufficient time resolution to follow the dynamic progression of both phases, provide a comprehensive picture of the flow physics during the migration of the CO2 front, the temporal evolution of individual menisci, and the growth of fingers within the porous microstructure. During that growth process, velocity jumps 20–25 times larger in magnitude than the bulk velocity were measured in the water phase and these bursts of water flow occurred both in-line with and against the bulk flow direction. These unsteady velocity events support the notion of pressure bursts and Haines jumps during pore drainage events as previously reported in the literature [1–3]. After passage of the CO2 front, shear-induced flow was detected in the trapped water ganglia in the form of circulation zones near the CO2–water interfaces as well as in the thin water films wetting the surfaces of the silicon micromodel. To our knowledge, the results presented herein represent the first quantitative spatially and temporally resolved velocity-field measurements at high pressure for water displacement by liquid/supercritical CO2 injection in a porous micromodel.  相似文献   

9.
Experiments designed to elucidate the pore-scale mechanisms of the dissolution of a residual non-aqueous phase liquid (NAPL), trapped in the form of ganglia within a porous medium, are discussed. These experiments were conducted using transparent glass micromodels with controlled pore geometry, so that the evolution of the size and shape of individual NAPL ganglia and, hence, the pore-scale mass transfer rates and mass transfer coefficients could be determined by image analysis. The micromodel design permitted reasonably accurate control of the pore water velocity, so that the mass transfer coefficients could be correlated in terms of a local (pore-scale) Peclet number. A simple mathematical model, incorporating convection and diffusion in a slit geometry was developed and used successfully to predict the observed mass transfer rates. For the case of non-wetting NAPL ganglia, water flow through the corners in the pore walls was seen to control the rate of NAPL dissolution, as recently postulated by Dillard and Blunt [Water Resour. Res. 36 (2000) 439–454]. Break-up of doublet non-wetting phase ganglia into singlet ganglia by snap-off in pore throats was also observed, confirming the interplay between capillarity and mass transfer. Additionally, the effect of wettability on dissolution mass transfer was demonstrated. Under conditions of preferential NAPL wettability, mass transfer from NAPL films covering the solid surfaces was seen to control the dissolution process. Supply of NAPL from the trapped ganglia to these films by capillary flow along pore corners was observed to result in a sequence of pore drainage events that increase the interfacial area for mass transfer. These observations provide new experimental evidence for the role of capillarity, wettability and corner flow on NAPL ganglia dissolution.  相似文献   

10.
We investigated the dissolution of non-aqueous phase liquids (NAPLs) in a three-dimensional random sphere-pack medium using a pore-scale modeling approach to advance fundamental understanding and connect rigorously to microscale processes. Residual NAPL distributions were generated using a morphological approach and the entrapped non-wetting phase was quantitatively characterized by calculating volume, orientation, interfacial area, and shape of isolated NAPL regions. With a detailed aqueous-phase flow field obtained by a multiple-relaxation time lattice Boltzmann approach, we solved the advective–diffusive equation in the pore space using a high-resolution, adaptive-stencil finite-volume scheme and an operator-splitting algorithm. We show good agreement between the mass transfer rates predicted in the computational approach and previously published experimental observations. The pore-scale simulations presented in this work provide the first three-dimensional comparison to the considerable experimental work that has been performed to derive constitutive relations to quantify mass transfer from a residual NAPL to a flowing aqueous phase.  相似文献   

11.
12.
We report here on recent developments and advances in pore-scale X-ray tomographic imaging of subsurface porous media. Our particular focus is on immiscible multi-phase fluid flow, i.e., the displacement of one immiscible fluid by another inside a porous material, which is of central importance to many natural and engineered processes. Multiphase flow and displacement can pose a rather difficult problem, both because the underlying physics is complex, and also because standard laboratory investigation reveals little about the mechanisms that control micro-scale processes. X-ray microtomographic imaging is a non-destructive technique for quantifying these processes in three dimensions within individual pores, and as we report here, with rapidly increasing spatial and temporal resolution.  相似文献   

13.
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.  相似文献   

14.
15.
The selective radius shift model was used to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties affecting flow in porous media. The model accounts for (i) precipitation/dissolution taking place only in the water-filled part of the pore space and further that (ii) the amount of mineral precipitation/dissolution within a pore depends on the local pore volume. The pore bundle concept was used to connect pore-scale changes to macroscopic soil hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and, consequently, in the effective porosity. In a time step of the numerical model, mineral reactions lead to a discontinuous pore-size distribution because only the water-filled pores are affected. The pore-size distribution is converted back to a soil moisture characteristic function to which a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with a mixed-form solution of Richards’ equation for aqueous phase flow, the model was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC’s comprehensive geochemical reactions. Example applications include kinetic halite dissolution and calcite precipitation as a consequence of cation exchange. These applications showed marked changes in the soil’s hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on water contents. The simulations also revealed the strong influence of the degree of saturation on the development of the saturated hydraulic conductivity through its quadratic dependency on the van Genuchten parameter α. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.  相似文献   

16.
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m.  相似文献   

17.
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection—involving exponential stretching and folding of fluid elements—the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.  相似文献   

18.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

19.
A pore‐scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l?1 NaCl during leaching. This was applied to examine the effects of particle release and re‐deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0·4% of the initial value and the air‐entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8·5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore‐size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 µm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 µm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Three‐dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore‐network models (“proxies”) using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post‐processing and validation can reduce uncertainty in the 3D‐printed proxy accuracy (difference of proxy geometry from the digital model). Post‐processing is a multi‐step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin‐section images of 3D‐printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D‐printed “gap test” wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (~13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15‐, 23‐, and 30‐fold magnifications to validate the workflow. Helium porosities of the 3D‐printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ~1% point), though uncertainties remain regarding the nature of sub‐micron “artifact” pores imparted by the 3D printing process. This study shows the benefits of including post‐processing and validation in any workflow to produce porous rock proxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号