首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
We study solute transport in a periodic channel with a sinusoidal wavy boundary when inertial flow effects are sufficiently large to be important, but do not give rise to turbulence. This configuration and setup are known to result in large recirculation zones that can act as traps for solutes; these traps can significantly affect dispersion of the solute as it moves through the domain. Previous studies have considered the effect of inertia on asymptotic dispersion in such geometries. Here we develop an effective spatial Markov model that aims to describe transport all the way from preasymptotic to asymptotic times. In particular we demonstrate that correlation effects must be included in such an effective model when Péclet numbers are larger than O(100) in order to reliably predict observed breakthrough curves and the temporal evolution of second centered moments. For smaller Péclet numbers correlation effects, while present, are weak and do not appear to play a significant role. For many systems of practical interest, if Reynolds numbers are large, it may be typical that Péclet numbers are large also given that Schmidt numbers for typical fluids and solutes can vary between 1 and 500. This suggests that when Reynolds numbers are large, any effective theories of transport should incorporate correlation as part of the upscaling procedure, which many conventional approaches currently do not do. We define a novel parameter to quantify the importance of this correlation. Next, using the theory of CTRWs we explain a to date unexplained phenomenon of why dispersion coefficients for a fixed Péclet number increase with increasing Reynolds number, but saturate above a certain value. Finally we also demonstrate that effective preasymptotic models that do not adequately account for velocity correlations will also not predict asymptotic dispersion coefficients correctly.  相似文献   

2.
With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity.  相似文献   

3.
This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile–immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection–dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer tests.  相似文献   

4.
5.
《Advances in water resources》2007,30(6-7):1408-1420
Non-invasive magnetic resonance microscopy (MRM) methods are applied to study biofouling of a homogeneous model porous media. MRM of the biofilm biomass using magnetic relaxation weighting shows the heterogeneous nature of the spatial distribution of the biomass as a function of growth. Spatially resolved MRM velocity maps indicate a strong variation in the pore scale velocity as a function of biofilm growth. The hydrodynamic dispersion dynamics for flow through the porous media is quantitatively characterized using a pulsed gradient spin echo technique to measure the propagator of the motion. The propagator indicates a transition in transport dynamics from a Gaussian normal diffusion process following a normal advection diffusion equation to anomalous transport as a function of biofilm growth. Continuous time random walk models resulting in a time fractional advection diffusion equation are shown to model the transition from normal to anomalous transport in the context of a conceptual model for the biofouling. The initially homogeneous porous media is transformed into a more complex heterogeneous porous media by the biofilm growth.  相似文献   

6.
《Advances in water resources》2005,28(11):1171-1195
We extend lattice Boltzmann (LB) methods to advection and anisotropic-dispersion equations (AADE). LB methods are advocated for the exactness of their conservation laws, the handling of different length and time scales for flow/transport problems, their locality and extreme simplicity. Their extension to anisotropic collision operators (L-model) and anisotropic equilibrium distributions (E-model) allows to apply them to generic diffusion forms. The AADE in a conventional form can be solved by the L-model. Based on a link-type collision operator, the L-model specifies the coefficients of the symmetric diffusion tensor as linear combination of its eigenvalue functions. For any type of collision operator, the E-model constructs the coefficients of the transformed diffusion tensors from linear combinations of the relevant equilibrium projections. The model is able to eliminate the second order tensor of its numerical diffusion. Both models rely on mass conserving equilibrium functions and may enhance the accuracy and stability of the isotropic convection–diffusion LB models.The link basis is introduced as an alternative to a polynomial collision basis. They coincide for one particular eigenvalue configuration, the two-relaxation-time (TRT) collision operator, suitable for both mass and momentum conservation laws. TRT operator is equivalent to the BGK collision in simplicity but the additional collision freedom relates it to multiple-relaxation-times (MRT) models. “Optimal convection” and “optimal diffusion” eigenvalue solutions for the TRT E-model allow to remove next order corrections to AADE. Numerical results confirm the Chapman–Enskog and dispersion analysis.  相似文献   

7.
We derive a meshless numerical method based on smoothed particle hydrodynamics (SPH) for the simulation of conservative solute transport in heterogeneous geological formations. We demonstrate that the new proposed scheme is stable, accurate, and conserves global mass. We evaluate the performance of the proposed method versus other popular numerical methods for the simulation of one- and two-dimensional dispersion and two-dimensional advective–dispersive solute transport in heterogeneous porous media under different Pèclet numbers. The results of those benchmarks demonstrate that the proposed scheme has important advantages over other standard methods because of its natural ability to control numerical dispersion and other numerical artifacts. More importantly, while the numerical dispersion affecting traditional numerical methods creates artificial mixing and dilution, the new scheme provides numerical solutions that are “physically correct”, greatly reducing these artifacts.  相似文献   

8.
Several laboratory experiments were conducted to identify the validity domain under which a Hele–Shaw cell may serve as a suitable analogue for variable-density flow in homogeneous porous media. These experiments are concerned with the injection into a Hele–Shaw cell of a salt solute at different concentrations and flow rates. The experimental data analysis highlighted two types of mixing zone shape: with and without ‘fingers’. A semi-empirical criterion based on the ratio between gravitational and injected velocities was used to forecast the change from one shape to another. The experimental data were then analysed using numerical solutions of the classical Hele–Shaw equations by taking into account an anisotropic dispersion tensor whose components depend on fluid density gradients. The good agreement between experimental and numerical results clearly shows that the validity of the concentration-dependent dispersion tensor strongly depends on the local Péclet number variation. For Péclet numbers lower 50, the Hele–Shaw cell can be considered as an analogous model of a homogeneous and isotropic 2D porous medium. It can be successfully used to study, at the laboratory scale, the gravitational instability effects induced by flow and transport phenomena into a porous medium.  相似文献   

9.
Radial reactive transport is investigated in an aquifer–aquitard system considering the important processes such as advection, radial and vertical dispersions for the aquifer, vertical advection and dispersion for the aquitards, and first-order biodegradation or radioactive decay. We solved the coupled governing equations of transport in the aquifer and the aquitards by honoring the continuity of concentration and mass flux across the aquifer–aquitard interfaces and recognizing the concentration variation along the aquifer thickness. This effort improved the averaged-approximation (AA) model, which dealt with radial dispersion in an aquifer–aquitard system by excluding the aquitard advection. To compare with our new solution, we expanded the AA model by including the aquitard advection. The expanded AA model considerably overestimated the mass in the upper aquitard when an upward advection existed there. The rates of mass change in the upper aquitard from the new solution and the AA model solution increased with time following sub-linear fashions. The times corresponding to the peak values of the residence time distributions for the AA model, the expanded AA model, and the new model were almost the same. The residence time distributions seemed to follow the Maxwell–Boltzmann distribution closely when plotting the time in logarithmic scale. In addition, we developed a finite-element COMSOL Multiphysics simulation of the problem, and found that the COMSOL solution agreed with the new solution well.  相似文献   

10.
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection—involving exponential stretching and folding of fluid elements—the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.  相似文献   

11.
A previous study [Water Resour Res 39 (3) (2003) doi:10.1029/2002WR001338] questioned the validity of the traditional advection–dispersion equation for describing gas flow in porous media. In an original mathematical derivation presented in Part 1 [Adv Water Resour, this issue] we have demonstrated the theoretical existence of two novel physical phenomena which govern the macroscopic transport of gases in porous media. In this work we utilize laboratory experiments and numerical modeling in order to ascertain the importance of these novel theoretical terms. Numerical modeling results indicate that the newly derived sorptive velocity, arising from closure level coupling effects, does not contribute noticeably to the overall flux, under the conditions explored in this work. We demonstrate that the newly discovered “slip coupling” phenomenon in the mass conservation equation plays an important role in describing the physics of gas flow through porous solids for flow regimes of both environmental and industrial interest.  相似文献   

12.
The delineation of wellhead protection areas (WHPAs) under uncertainty is still a challenge for heterogeneous porous media. For granular media, one option is to combine particle tracking (PT) with the Monte Carlo approach (PT‐MC) to account for geologic uncertainties. Fractured porous media, however, require certain restrictive assumptions under this approach. An alternative for all types of media is the capture probability (CP) approach, which is based on the solution of the standard advection‐dispersion equation in a backward mode, making use of the analogy between forward and backward transport processes. Within this context, we review the current controversy about the correct form of the conceptual model for transport, finding that the advection‐diffusion model, which represents the diffusive interchange between streamtubes with differing velocities, is more physically realistic than the conventional advection‐dispersion model. For mildly to moderately heterogeneous materials, stochastic theories and simulation experiments show that this process converges at the field scale to an effective advection‐dispersion process that can be simulated with conventional transport models using appropriate macrodispersivity values. For highly heterogeneous materials, stochastic theories do not yet exist but there is no reason why the process should not converge naturally as well. Macrodispersivities appear to be formation‐specific. The advection‐dispersion model can be used for capture zone delineation in heterogeneous granular media. For fractured porous systems, hybrid equivalent porous medium and discrete fracture network or CP‐based approaches may have potential. In general, capture zones delineated by PT without MC will always be too small and should not be used as a basis for land‐use decisions.  相似文献   

13.
Water interacts with soil through pore channels putting mineral constituents and pollutants into solution. The irregularity of pore boundaries and the heterogeneity of distribution of soil minerals and contaminants are, among others, two factors influencing that interaction and, consequently, the leaching of chemicals and the dispersion of solute throughout the soil. This paper deals with the interaction of irregular winding dragging paths through soil complex distributions. A mathematical modelling of the interplay between multifractal distributions of mineral/pollutants in soil and fractal pore networks is presented. A Hölder path is used as a model of soil pore network and a multifractal measure as a model of soil complex distribution, obtaining a mathematical result which shows that the Hölder exponent of the path and the entropy dimension of the distribution may be used to quantify such interplay. Practical interpretation and potential applications of the above result in the context of soil are discussed. Since estimates of the value of both parameters can be obtained from field and laboratory data, hopefully this mathematical modelling might prove useful in the study of solute dispersion processes in soil.  相似文献   

14.
《Advances in water resources》2007,30(6-7):1392-1407
Field and column studies of biocolloid transport in porous media have yielded a large body of information, used to design treatment systems, protect water supplies and assess the risk of pathogen contamination. However, the inherent “black-box” approach of these larger scales has resulted in generalizations that sometimes prove inaccurate. Over the past 10–15 years, pore scale visualization techniques have improved substantially, allowing the study of biocolloid transport in saturated and unsaturated porous media at a level that provides a very clear understanding of the processes that govern biocolloid movement. For example, it is now understood that the reduction in pathways for biocolloids as a function of their size leads to earlier breakthrough. Interception of biocolloids by the porous media used to be considered independent of fluid flow velocity, but recent work indicates that there is a relationship between them. The existence of almost stagnant pore water regions within a porous medium can lead to storage of biocolloids, but this process is strongly colloid-size dependent, since larger biocolloids are focused along the central streamlines in the flowing fluid. Interfaces, such as the air–water interface, the soil–water interface and the soil–water–air interface, play a major role in attachment and detachment, with significant implications for risk assessment and system design. Important research questions related to the pore-scale factors that control attachment and detachment are key to furthering our understanding of the transport of biocolloids in porous media.  相似文献   

15.
We present an analytical expression for the shear dispersion during solute transport in a coupled fracture–matrix system. The dispersion coefficient is obtained in a fracture with porous walls by taking into account an accurate boundary condition at the interface between the matrix and fracture, and the results were compared with those in a non-coupled system. The analysis presented identifies three regimes: diffusion-dominated, transition, and advection-dominated. The results showed that it is important to consider the exchange of solute between the fracture and matrix in development of the shear dispersion coefficient for the transition and advection-dominated regimes. The new dispersion coefficient is obtained by imposing the continuity of concentrations and mass fluxes along the porous walls. The resulting equivalent transport equation revealed that the effective velocity in a fracture increases while the dispersion coefficient decreases due to mass transfer between the matrix and fracture. A larger effective advection term leads to greater storage of mass in the matrix as compared with the classical double-porosity model with a non-coupled dispersion coefficient. The findings of this study can be used for modeling of tracer tests as well as fate, transport, and remediation of groundwater contaminants in fractured rocks.  相似文献   

16.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   

17.
Transport of nonsorbing solutes in a streambed with periodic bedforms   总被引:1,自引:0,他引:1  
Previous studies of hyporheic zone focused largely on the net mass transfer of solutes between stream and streambed. Solute transport within the bed has attracted less attention. In this study, we combined flume experiments and numerical simulations to examine solute transport processes in a streambed with periodic bedforms. Solute originating from the stream was subjected to advective transport driven by pore water circulation due to current–bedform interactions as well as hydrodynamic dispersion in the porous bed. The experimental and numerical results showed that advection played a dominant role at the early stage of solute transport, which took place in the hyporheic zone. Downward solute transfer to the deep ambient flow zone was controlled by transverse dispersion at the later stage when the elapsed time exceeded the advective transport characteristic time tc (= L/uc with L being the bedform length and uc the characteristic pore water velocity). The advection-based pumping exchange model was found to predict reasonably well solute transfer between the overlying water and streambed at the early stage but its performance deteriorated at the later stage. With dispersion neglected, the pumping exchange model underestimated the long-term rate and total mass of solute transfer from the overlying water to the bed. Therefore both advective and dispersive transport components are essential for quantification of hyporheic exchange processes.  相似文献   

18.
Tracer studies are a commonly used tool to develop and test Einstein-type stochastic bedload transport models. The movements of these tracers are controlled by many factors including grain characteristics, hydrologic forcing, and channel morphology. Although the influence of these sediment storage zones related to morphological features (e.g., bars, pools, riffles) have long been observed to “trap” bedload particles in transport, this influence has not been adequately quantified. In this paper we explore the influence of channel morphology on particle travel distances through the development of a Bayesian survival process model. This model simulates particle path length distributions using a location-specific “trapping probability” parameter (pi ), which is estimated using the starting and ending locations of bedload tracers. We test this model using a field tracer study from Halfmoon Creek, Colorado. We find that (1) the model is able to adequately recreate the observed multi-modal path length distributions, (2) particles tend to accumulate in trapping zones, especially during large floods, and (3) particles entrained near a trapping zone will travel a shorter distance than one that is further away. Particle starting positions can affect path lengths by as much as a factor of two, which we confirm by modelling “starting-location-specific” path length probability distributions. This study highlights the importance of considering both tracer locations and channel topography in examinations of field tracer studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Modelling adsorptive solute transport in soils needs a number of parameters to describe its reaction kinetics and the values of these parameters are usually determined from batch and displacement experiments. Some experimental results reveal that when describing the adsorption as first-order kinetics, its associated reaction rates are not constants but vary with pore water velocity. Explanation of this varies but an independent verification of each explanation is difficult because simultaneously measuring the spatiotemporal distributions of dissolved and adsorbed solutes in soils is formidable. Pore-scale modelling could play an important role to address this gap and has received increased attention over the past few years. This paper investigated the transport of adsorptive solute in a simple porous medium using pore-scale modelling. Fluid flow through the void space of the medium was assumed to be laminar and in saturated condition, and solute transport consisted of advection and molecular diffusion; the sorption and desorption occurring at the fluid–solid interface were modelled as linear first-order kinetics. Based on the simulated spatiotemporal distribution of dissolved and adsorbed solutes at pore scale, volumetric-average reaction kinetics at macroscopic scale and its associated reactive parameters were measured. Both homogeneous adsorption where the reaction rates at microscopic scale are constant, and heterogeneous adsorption where the reaction rates vary from site to site, were investigated. The results indicate that, in contrast to previously thought, the macroscopic reaction rates directly measured from the pore-scale simulations do not change with pore velocity under both homogeneous and heterogeneous adsorptions. In particular, we found that for the homogeneous adsorption, the macroscopic adsorption remains first-order kinetic and can be described by constant reaction rates, regardless of flow rate; whilst for the heterogeneous adsorption, the macroscopic adsorption kinetics continues not to be affected by flow rate but is no longer first-order kinetics that can be described by constant reaction rates. We discuss how these findings could help explain some contrary literature reports over the dependence of reaction rates on pore water velocity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号