首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments designed to elucidate the pore-scale mechanisms of the dissolution of a residual non-aqueous phase liquid (NAPL), trapped in the form of ganglia within a porous medium, are discussed. These experiments were conducted using transparent glass micromodels with controlled pore geometry, so that the evolution of the size and shape of individual NAPL ganglia and, hence, the pore-scale mass transfer rates and mass transfer coefficients could be determined by image analysis. The micromodel design permitted reasonably accurate control of the pore water velocity, so that the mass transfer coefficients could be correlated in terms of a local (pore-scale) Peclet number. A simple mathematical model, incorporating convection and diffusion in a slit geometry was developed and used successfully to predict the observed mass transfer rates. For the case of non-wetting NAPL ganglia, water flow through the corners in the pore walls was seen to control the rate of NAPL dissolution, as recently postulated by Dillard and Blunt [Water Resour. Res. 36 (2000) 439–454]. Break-up of doublet non-wetting phase ganglia into singlet ganglia by snap-off in pore throats was also observed, confirming the interplay between capillarity and mass transfer. Additionally, the effect of wettability on dissolution mass transfer was demonstrated. Under conditions of preferential NAPL wettability, mass transfer from NAPL films covering the solid surfaces was seen to control the dissolution process. Supply of NAPL from the trapped ganglia to these films by capillary flow along pore corners was observed to result in a sequence of pore drainage events that increase the interfacial area for mass transfer. These observations provide new experimental evidence for the role of capillarity, wettability and corner flow on NAPL ganglia dissolution.  相似文献   

2.
This paper presents a review of the state-of-the-art on interphase mass transfer between immiscible fluids in porous media with focus on the factors that have significant influence on this process. In total close to 300 papers were reviewed focusing to a large extent on the literature relating to NAPL contamination of the subsurface. The large body of work available on this topic was organized according to the length scale of the conducted studies, namely the pore, meso and field scales. The interrelation of interphase mass transfer at these different scales is highlighted. To gain further insight into interphase mass transfer, published studies were discussed and evaluated in terms of the governing flow configurations defined in terms of the wettability and mobility of the different phases. Such organization of the existing literature enables the identification of the interfacial domains that would have significant impact on interphase mass transfer. Available modeling approaches at the various length scales are discussed with regard to current knowledge on the physics of this process. Future research directions are also suggested.  相似文献   

3.
Wettability profoundly affects not only the initial distribution of residual NAPL contaminants in natural soils, but also their subsequent dissolution in a flowing aqueous phase. Under conditions of preferential NAPL wettability, the residual NAPL phase is found within the smaller pores and in the form of continuous corner filaments and thick films on pore walls. Such films expose a much greater interfacial area for mass transfer than would be exposed by the same amount of non-wetting NAPL. Importantly, capillary and hydraulic continuity of NAPL filaments and thick films is essential for sustaining NAPL–water counterflow during the course of NAPL dissolution in flowing groundwater—a mechanism which maintains and even increases the interfacial area for mass transfer. Continued dissolution results in gradual thinning of the NAPL films, which may become unstable and rupture causing disconnection of the residual NAPL in the form of clusters. Using a pore network simulator, we demonstrate that NAPL film instability drastically modifies the microscopic configuration of residual NAPL, and hence the local hydrodynamic conditions and interfacial area for mass transfer, with concomitant effects on macroscopically observable quantities, such as the aqueous effluent concentration and the fractional NAPL recovery with time. These results strongly suggest that the disjoining pressure of NAPL films may exert an important, and hitherto unaccounted, control on the dissolution behaviour of a residual NAPL phase in oil wet systems.  相似文献   

4.
Mass and heat transfer occurring across phase-interfaces in multi-phase flow in porous media are mostly approximated using equilibrium relationships or empirical kinetic models. However, when the characteristic time of flow is smaller than that of mass or heat transfer, non-equilibrium situations may arise. Commonly, empirical approaches are used in such cases. There are only few works in the literature that use physically-based models for these transfer terms. In fact, one would expect physical approaches to modeling kinetic interphase mass and heat transfer to contain the interfacial area between the phases as a variable. Recently, a two-phase flow and solute transport model was developed that included interfacial area as a state variable [36]. In that model, interphase mass transfer was modeled as a kinetic process.  相似文献   

5.
We investigated the dissolution of non-aqueous phase liquids (NAPLs) in a three-dimensional random sphere-pack medium using a pore-scale modeling approach to advance fundamental understanding and connect rigorously to microscale processes. Residual NAPL distributions were generated using a morphological approach and the entrapped non-wetting phase was quantitatively characterized by calculating volume, orientation, interfacial area, and shape of isolated NAPL regions. With a detailed aqueous-phase flow field obtained by a multiple-relaxation time lattice Boltzmann approach, we solved the advective–diffusive equation in the pore space using a high-resolution, adaptive-stencil finite-volume scheme and an operator-splitting algorithm. We show good agreement between the mass transfer rates predicted in the computational approach and previously published experimental observations. The pore-scale simulations presented in this work provide the first three-dimensional comparison to the considerable experimental work that has been performed to derive constitutive relations to quantify mass transfer from a residual NAPL to a flowing aqueous phase.  相似文献   

6.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

7.
《Advances in water resources》2007,30(6-7):1618-1629
Residual dense non-aqueous liquids (NAPLs) in aquifers constitute a great challenge for groundwater cleanup. Active engineered treatment of regions that contain residual NAPLs is often required to shorten the long-term impact of NAPLs on groundwater quality. Enhanced residual NAPL cleanup can be achieved by promoting biodegradation of NAPL components in the aqueous phase, thereby increasing contaminant fluxes from the NAPL phase. Reaction-enhanced NAPL dissolution is often mathematically simulated under the assumption that lumped mass transfer coefficients, used to describe the dissolution behavior of the NAPL phase, are independent of the reactions. However, this assumption is not warranted because reactions occurring near the water–NAPL interface can reduce characteristic mass transfer lengths, which tend to enhance mass transfer over the no-reaction case.In this study, we mathematically investigated the connections between lumped mass transfer coefficients and reaction kinetics over an idealized residual NAPL domain. Since mass transfer is frequently a scale-dependent process, we also examined the influence of system extent on mass transfer coefficients. For our idealized domain with an assumed first-order decay reaction, the results show that lumped mass transfer coefficients depend on reaction kinetics and system scale. The mass transfer coefficient derived from the non-reactive case cannot properly represent the mass transfer process under the reactive conditions. When the advection time scale is long in comparison to the transverse dispersion time scale in the system, a fast reaction can increase significantly the lumped mass transfer coefficient. The mass transfer coefficient used for simulation was also found to be affected by the nature of the numerical scheme used.  相似文献   

8.
Partitioning interwell tracer tests (PITTs) are a relatively new technique for measuring the amount of nonaqueous phase liquid (NAPL) within saturated porous media. In this work we examined the influence of mass transfer limitations on the accuracy of measured NAPL from PITTs. Two mathematical models were used along with laboratory column experiments to explore the influence of tracer partition coefficient, tracer detection limit, and injected tracer mass on NAPL measurements. When dimensionless mass transfer coefficients were small, NAPL measurement errors decreased with decreasing tracer partition coefficient, decreasing tracer detection limit, and increasing injected tracer mass. Extrapolating breakthrough curves exponentially reduced but did not eliminate systematic errors in NAPL measurement. Although transport in a single stream tube was used in the mathematical models and laboratory experiments, the results from this simplified domain were supported by data taken from a three-dimensional computational experiment, where the NAPL resided as large pool. Based on these results, we suggest guidelines for interpreting tracer breakthrough data to ascertain the importance of mass transfer limitations on NAPL measurements.  相似文献   

9.
Studies of NAPL dissolution in porous media have demonstrated that measurement of saturation alone is insufficient to describe the rate of dissolution. Quantification of the NAPL–water interfacial area provides a measure of the expected area available for mass transfer and will likely be a primary determinant of NAPL removal efficiency. To measure the interfacial area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow in a Soltrol–water–glass bead system. The interfacial area is found to increase as the wetting phase saturation decreases, reach a maximum, and then decrease as the wetting phase saturation goes to zero. These results are compared to previous findings for an air–water–glass bead study; The Soltrol–water interfacial areas were found to peak at similar saturations as those measured for the air–water system (20–35% saturation range), however, the peak values were in some cases almost twice as high for the oil-water system. We believe that the observed differences between the air–water and oil–water systems to a large degree can be explained by the differences in interfacial tensions for the two systems.  相似文献   

10.
Flow of nonvolatile nonaqueous phase liquid (NAPL) and aqueous phases that account for mobile, entrapped, and residual NAPL in variably saturated water-wet porous media is modeled and compared against results from detailed laboratory experiments. Residual saturation formation in the vadose zone is a process that is often ignored in multifluid flow simulators, which might cause an overestimation of the volume of NAPL that reaches the ground water. Mobile NAPL is defined as being continuous in the pore space and flows under a pressure gradient or gravitational body force. Entrapped NAPL is defined as being occluded by the aqueous phase, occurring as immobile ganglia surrounded by aqueous phase in the pore space and formed when NAPL is replaced by the aqueous phase. Residual NAPL is defined as immobile, nonwater entrapped NAPL that does not drain from the pore spaces and is conceptualized as being either continuous or discontinuous. Free NAPL comprises mobile and residual NAPL. The numerical model is formulated on mass conservation equations for oil and water, transported via NAPL and aqueous phases through variably saturated porous media. To account for phase transitions, a primary variable switching scheme is implemented for the oil-mass conservation equation over three phase conditions: (1) aqueous or aqueous-gas with dissolved oil, (2) aqueous or aqueous-gas with entrapped NAPL, and (3) aqueous or aqueous gas with free NAPL. Two laboratory-scale column experiments are modeled to verify the numerical model. Comparisons between the numerical simulations and experiments demonstrate the necessity to include the residual NAPL formation process in multifluid flow simulators.  相似文献   

11.
Biodegradation in porous media is studied with carefully controlled and well-characterized experiments in model porous media constructed of etched glass. Porous media of this type allow visual observation of the phenomena that take place at pore scale. An aqueous solution of five organic pollutants (toluene, phenol, o-cresol, naphthalene and 1,2,3-trimethylbenzene) was used as a model NAPL (representing creosote). The bacteria used were Pseudomonas fluorescens, which are indigenous (even predominant) in many contaminated soils. The maximum aqueous concentrations of the specific organic substances, below which biodegradation becomes possible, were determined as a function of temperature from toxicity experiments. Visualization experiments were made under various flow velocities and organic loadings to study the morphology and thickness of the biofilm as a function of the pore size and the distance from the entrance, and the efficiency of biodegradation. The efficiency of biodegradation decreased as the aqueous concentration of NAPL at the inlet increased and/or as the flow velocity increased. The thickness of biofilm decreased as the distance from the inlet increased and/or the pore diameter decreased. A quasi-steady-state theoretical model of biodegradation was used to calculate the values of the mesoscopic biochemical rates and to predict the profile of NAPL concentration in the porous medium and the thickness of biofilm in pores. The agreement between experimental data and model predictions is quite satisfactory.  相似文献   

12.
Laboratory experiments and numerical simulations in homogeneous porous media were used to investigate the influence of porous medium wettability on the formation and growth of preferential dissolution pathways, dissolution fingers, during nonaqueous phase liquid (NAPL) dissolution. As the porous medium became increasingly NAPL-wet, dissolution fingers grew wider and slower. This result was observed in physical experiments with 0% and 100% NAPL-wet conditions and confirmed with numerical simulations at these and intermediate wettabilities. A previously derived expression for an upscaled mass transfer rate coefficient that accounts for the growth of dissolution fingers was used to quantify the effect of fingering on overall NAPL removal rates. For the test cases evaluated, NAPL dissolution fingering controlled the overall rate of NAPL dissolution after the dissolution front moved 4 cm in 0% NAPL-wet conditions and 18 cm in 100% NAPL-wet conditions. Thus, even in completely NAPL-wet media dissolution fingering may control the overall rate of NAPL dissolution after relatively short travel distances. The importance of NAPL dissolution fingering in heterogeneous systems with spatially varying NAPL saturations, though, remains an important question for future work.  相似文献   

13.
The generation of vapor‐phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non‐aqueous‐phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two‐dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water‐wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water‐saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective‐dispersive‐diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.  相似文献   

14.
Neat ethanol (75.7 L) was released into the upper capillary zone in a continuous-flow, sand-packed aquifer tank (8.2 m3) with an average seepage velocity of 0.75 m/day. This model aquifer system contained a residual nonaqueous phase liquid (NAPL) that extended from the capillary zone to 10 cm below the water table. Maximum aqueous concentrations of ethanol were 20% v/v in the capillary zone and 0.08% in the saturated zone at 25 and 30 cm downgradient from the emplaced NAPL source, respectively. A bench-scale release experiment was also conducted for a similar size spill (scaled to the plan area). The concentrations of ethanol in ground water for both the bench- and pilot-scale experiments were consistent with advective–dispersive limited mass transfer from the capillary to the saturated zone. Concentrations of monoaromatic hydrocarbons and isooctane increased in the pore water of the capillary zone as a result of both redistribution of residual NAPL (confirmed by visualization) and enhanced hydrocarbon dissolution due to the cosolvent effect exerted by ethanol. In the tank experiment, higher hydrocarbon concentrations in ground water were also attributed to decreased hydrocarbon biodegradation activity caused by preferential microbial utilization of ethanol and the resulting depletion of oxygen. These results infer that spills of highly concentrated ethanol will be largely confined to the capillary zone due to its buoyancy, and ethanol concentrations in near-source zone ground water will be controlled by mass transfer limitations and hydrologic conditions. Furthermore, highly concentrated ethanol releases onto pre-existing NAPL will likely exacerbate impacts to ground water, due to NAPL mobilization and dissolution, and decreased bioattenuation of hydrocarbons.  相似文献   

15.
The partitioning of volatile non-aqueous phase liquid (NAPL) compounds to a discontinuous gas phase can result in the expansion of that gas phase, and the resulting gas flow can significantly affect the mass transfer from NAPL source zones. This recently reported gas flow generated by the spontaneous expansion of a discontinuous gas phase has not been extensively characterized in the literature. This study measured the expansion rate of a single gas cluster in a 1.1 mm sand above a pool of trans-1,2-dichloroethene (tDCE) in small-scale flow cell experiments. To characterize the gas flow, gas injection experiments in three sizes of sand were conducted at very slow injection rates typical of gas flow rates produced by gas expansion due to NAPL partitioning. Gas cluster spontaneous expansion rates above a tDCE pool were found to be 0.34 ± 0.02 and 0.29 ± 0.01 mL/day in duplicate experiments, which is sufficiently slow to result in discontinuous gas flow in porous media with a grain size diameter greater than 0.02 mm. Measured capillary pressures during gas injection showed patterns consistent with discontinuous gas flow, and identified multiple fragmentation events and expansion by coalescence with trapped clusters. The combination of pressure data and light transmission images were used to identify fragmentation and obtain direct measurements of the critical cluster length (i.e. the length at which withdrawal of the gas phase from a pore space occurs) in quasi-two-dimensional porous media for the first time. The measured critical cluster lengths were 1.4–3.6, 3.2–6.0 and 2.8–6.5 cm in 1.1, 0.7 and 0.5 mm sands, respectively. These values agreed well with estimates of the critical cluster length made using previously reported equations, and parameters derived from the medium’s capillary pressure-saturation relationship.  相似文献   

16.
More theoretical analysis is needed to investigate why a dual‐domain model often works better than the classical advection‐dispersion (AD) model in reproducing observed breakthrough curves for relatively homogeneous porous media, which do not contain distinct dual domains. Pore‐scale numerical experiments presented here reveal that hydrodynamics create preferential flow paths that occupy a small part of the domain but where most of the flow takes place. This creates a flow‐dependent configuration, where the total domain consists of a mobile and an immobile domain. Mass transfer limitations may result in nonequilibrium, or significant differences in concentration, between the apparent mobile and immobile zones. When the advection timescale is smaller than the diffusion timescale, the dual‐domain mass transfer (DDMT) model better captures the tailing in the breakthrough curve. Moreover, the model parameters (mobile porosity, mean solute velocity, dispersivity, and mass transfer coefficient) demonstrate nonlinear dependency on mean fluid velocity. The studied case also shows that when the Peclet number, Pe, is large enough, the mobile porosity approaches a constant, and the mass transfer coefficient can be approximated as proportional to mean fluid velocity. Based on detailed analysis at the pore scale, this paper provides a physical explanation why these model parameters vary in certain ways with Pe. In addition, to improve prediction in practical applications, we recommend conducting experiments for parameterization of the DDMT model at a velocity close to that of the relevant field sites, or over a range of velocities that may allow a better parameterization.  相似文献   

17.
Interfacial interactions, namely interfacial tension, wettability, capillarity and interfacial mass transfer are known to govern fluid distribution and behavior in porous media. Therefore the interfacial interactions between CO2, brine and oil and/or gas reservoirs have a significant influence on the effectiveness of any CO2 storage operations. However, data and knowledge of interfacial properties in storage conditions are scarce. This issue becomes particularly true in the case of deep saline aquifers where limited, economically driven, data collection and archiving are available. In this paper, we present a complete set of brine–CO2 interfacial tension data at pressure, temperature and salinity conditions, representative of a CO2 storage operation. A semi-empirical correlation is proposed to calculate the interfacial tension from the experimental data. Wettability is studied at pore scale, using glass micromodels in order to track fluids distribution as a function of the thermodynamic properties and wettability conditions for water–CO2 systems. With this approach, we show that, in strongly hydrophilic porous media, the CO2 does not wet the solid surface whereas; if the porous media has less hydrophilic properties the CO2 significantly wets the surface.  相似文献   

18.
Soils need to be thoroughly investigated regarding their potential for the natural attenuation of non-aqueous phase liquids (NAPL). Laboratory investigations truly representative of degradation processes in field conditions are difficult to implement for porous media partially saturated with water, NAPL and air. We propose an innovative protocol to investigate degradation processes under steady-state vadose zone conditions. Experiments are carried out in glass columns filled with a sand and, as bacteria source, a soil from a diesel-fuel-polluted site. Water and NAPL (n-hexadecane diluted in heptamethylnonane (HMN)) are added to the porous medium in a two-step procedure using ceramic membranes placed at the bottom of the column. This procedure results, for appropriate experimental conditions, in a uniform distribution of the two fluids (water and NAPL) throughout the column. In a biodegradation experiment non-biodegradable HMN is used to provide NAPL mass, while keeping biodegradable n-hexadecane small enough to monitor its rapid degradation. Biodegradation is followed as a function of time by measuring oxygen consumption, using a respirometer. Degradative activity is controlled by diffusive transfers in the porous network, of oxygen from the gas phase to the water phase and of n-hexadecane from the NAPL phase to the water phase.  相似文献   

19.
Organic contaminants present as nonaqueous phase liquids (NAPLs) in the subsurface often pose a long-term risk to human health and the environment. Investigating the distribution of NAPLs in porous media remains a major challenge in risk assessment and management of contaminated sites. Conventional soil coring and monitoring wells have been widely used over past decades as the primary means of subsurface investigation to determine NAPL extent. Known limitations of conventional approaches have led us to explore an alternative or a complementary technique to provide high-quality information of NAPL source zone architecture. This work advances an imaging tool for a variety of organic NAPL contaminants in unconsolidated soils through magnetic resonance imaging (MRI) of frozen cores. Using trichloroethylene (TCE) and o-xylene as model species, we illustrate that discriminatory freezing of water, while keeping the NAPL in a liquid state, enables high-resolution qualitative delineation of NAPL distribution within porous media. This novel approach may help improve site conceptual models and consequentially lead to highly tailored, more efficient remedial measures.  相似文献   

20.
This paper provides the thermodynamic approach and constitutive theory for closure of the conservation equations for multiphase flow in porous media. The starting point for the analysis is the balance equations of mass, momentum, and energy for two fluid phases, a solid phase, the interfaces between the phases and the common lines where interfaces meet. These equations have been derived at the macroscale, a scale on the order of tens of pore diameters. Additionally, the entropy inequality for the multiphase system at this scale is utilized. The internal energy at the macroscale is postulated to depend thermodynamically on the extensive properties of the system. This energy is then decomposed to provide energy forms for each of the system components. To obtain constitutive information from the entropy inequality, information about the mechanical behavior of the internal geometric structure of the phase distributions must be known. This information is obtained from averaging theorems, thermodynamic analysis, and from linearization of the entropy inequality at near equilibrium conditions. The final forms of the equations developed show that capillary pressure is a function of interphase area per unit volume as well as saturation. The standard equations used to model multiphase flow are found to be very restricted forms of the general equations, and the assumptions that are needed for these equations to hold are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号