首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The production of excess sludge is one of the most serious challenges in biological wastewater treatment. In the present work, disintegration is added as a new additional unit operation in a wastewater treatment plant, and the main objective is to reduce the amount of excess sludge. The use of high power ultrasound can effectively disintegrate the bacterial cells, and thereby, enhance the subsequent biodegradation during digestion. In the study, attempts are made to determine the disintegration capacity of waste activated sludge that has different total solids (TS) concentrations with low ultrasound frequency (20 kHz) and a fixed amplitude value (50%). The results show that in terms of soluble chemical oxygen demand (SCOD) release, sludge disintegration was primarily governed by ultrasonic density (W mL–1), whereas specific energy input appears to be more critical for protein release. A SCOD release of about 329 mg SCOD gTS–1 was obtained at a TS content of 2% and specific energy input of 5 kWs gTS–1. The SCOD release decreased to 248.5 and 124.2 mgSCOD gTS–1 at TS contents of 4 and 6%, respectively. The highest protein release of 80.7 mg gTS–1 was obtained at a TS content of 2% and a specific energy input of 10 kWs g–1. The sludge disintegration efficiency declined significantly at higher TS content.  相似文献   

2.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   

3.
4.
5.
《国际泥沙研究》2016,(4):291-298
As a result of the interaction between hydrodynamics and the effects of gravity, riverbank collapse is a common occurrence in the desert reach of the upper Yellow River (also called as Ningxia-Mongolia Inner reach), of which the riverbank may be divided into three types such as sandy riverbank in the wide-valley desert reach, silt-deposition riverbank on the fluvial plain and silt–sandy riverbank. The char-acteristics of both typical riverbank collapse and the particle size distributions (PSDs) for collapsed riverbanks of sandy, silt-deposition, and silt–sandy types were determined from analysis of data obtained from the field observations. It was found that particles from the silt-deposition riverbank had the smallest median size and those from the sandy riverbank the largest, with those from the silt–sandy riverbank being intermediate in size. The PSDs of the sandy and silt-deposition riverbanks exhibited double-peaked and single-peaked structures, respectively, while those of the silt–sandy riverbank exhibited multiple peaks. Furthermore, the corresponding to three kinds of riverbank collapse mechanisms were revealed. These results are significant with regard both to the understanding of river dynamics and to the planning of river harnessing projects.  相似文献   

6.
7.
2010年3月20日至3月28日,利用大气细粒子谱分析仪对合肥地区大气细粒子谱进行连续在线观测.观测过程涵盖整个沙尘暴降尘期、间歇性降雨期及晴好天气粒子浓度增长期.颗粒物数浓度分析表明,沙尘暴降尘期内核模态(Nucleation mode, 5~20 nm)、爱根核模态(Aitken mode, 20~100 nm)和积聚模态(Accumulation mode, 100~1000 nm)粒子浓度分别为898 cm-3、3424 cm-3、1587 cm-3,并未明显高于间歇性降雨期(粒子浓度分别为255 cm-3、1509 cm-3、1213 cm-3)和晴好天气粒子浓度增长期(粒子浓度分别为706 cm-3、4891 cm-3、2468 cm-3);沙尘暴降尘期粗粒子模态(Coarse mode, 1~10 μm) 粒子值达到 48 cm-3,浓度远高于其他观测期.粒谱分析表明:合肥地区大气细粒子谱呈典型双峰结构,第一峰值出现在10~20 nm之间,第二峰值出现在100 nm左右,而且不同天气条件下细粒子谱峰值位置略有不同;沙尘暴降尘期,粒径10 nm以下和400 nm以上粒子浓度值高于间歇性降雨期和晴好天气粒子浓度增长期,而并非只有粗粒子模态粒子浓度高于其他时段.  相似文献   

8.
Gale and Hoare (1992) have provided a figure relating maximum particle diameter in a coarse clastic sediment to the size of sample required to generate a reproducible measure of the particle-size distribution of that sediment. However, they fail adequately to justify the basis for the criterion of sample adequacy adopted in their proposal. Additionally, there is a range of separate issues neglected by Gale and Hoare (1992) which makes their conclusion inapplicable in many situations. A fundamental issue that they neglect is the purpose lying behind a grain-size analysis: this issue determines what grain size measures are appropriate, rather than the empirical, seemingly purpose-independent, approach of Gale and Hoare (1992).  相似文献   

9.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

10.
The particle size distribution of bed materials in the sandy river bed of alluvial rivers is important in the study of topics such as friction, river bed evolution, erosion, and siltation. It also can reflect the dependency relation between river bed sediment and flow intensity. In this paper, the critical pattern of sediment movement in the near-wall region of a sandy river bed was analyzed. According to the principle of momentum balance, the critical settling-rising condition of bed material in a sandy river bed was found to be instantaneous turbulent velocity equal to 2.7 times the sediment settling velocity in quiescent water. Based on a vertical instantaneous turbulent velocity with a Gaussian distribution, a theoretical relation for calculating the particle size distribution of bed materials in a sandy river bed without pre-known characteristic grain sizes was developed by solving a stochastic equation. The for-mula is verified using measured data, and the results show that the proposed formula was in accordance with the measured data. This study has theoretical significance and practical value for determining the bed material particle size distribution of the sandy bed of alluvial rivers.  相似文献   

11.
本文对大气悬浮颗粒物的测量是利用半导体激光器,通过镜片组形成双光斑,当颗粒物经过双光斑时发生散射,由雪崩二极管检测散射光形成双峰信号,双峰间距即为待测粒子通过双光斑时的飞行时间,利用飞行时间可得到相应的粒径大小. 大量的实验表明空气中的粒谱呈正态高斯分布,这点与理论分析结果相一致.  相似文献   

12.
Hyperconcentrated flows often occur in the middle and lower Yellow River(MLYR)and its tributaries,within which the main sediment source originates from the Loess Plateau of China due to serious water erosion.Little is known about the properties of river sediment that is transported by hyperconcentrated flows,particularly with respect to the mineral composition and size distribution.Samples of sediment and loess were collected in the northern,middle,and southern Loess Plateau and the mainstream and tributaries of the MLYR.A total of 18 loess samples and 24 river sediment samples were analyzed to determine their sediment size distribution and mineral composition.The bottom loess samples reflected the original sedimentary features of the Loess Plateau,and the median particle size reduced,and the clay content increased from the north to the south of the study region.The surface loess has been weathered under the action of wind and rainfall,and the clay particle content in the surface loess samples was higher than that in the undisturbed bottom loess.Erosion of the surface soil due to rainfall and surface runoff means that fine particles(mostly clay)have been washed away.The median diameter of surface loess particles was a little larger than that of the bottom loess particles where water erosion dominates.The particle size became coarser with increasing distance from the estuary in the MLYR,which reflects depositional sorting in the river channel.Significant logarithmic relations were found between the median diameter of the sediment particles and the i)non-clay mineral content and ii)clay mineral content.Thus,clay and non-clay mineral compositions can be conveniently estimated from the particle size distribution.  相似文献   

13.
A dynamic simulation model of the Ankara central wastewater treatment plant (ACWTP) was evaluated for the prediction of effluent COD concentrations. Firstly, a mechanistic model of the municipal wastewater treatment process was developed based on Activated Sludge Model No. 1 (ASM1) by using a GPS‐X computer program. Then, the mechanistic model was combined with a feed‐forward back‐propagation neural network in parallel configuration. The appropriate architecture of the neural network models was determined through several iterative steps of training and testing of the models. Both models were run with the data obtained from the plant operation and laboratory analysis to predict the dynamic behavior of the process. Using these two models, effluent COD concentrations were predicted and the results were compared for the purpose of evaluation of treatment performance. It was observed that the ASM1 ANN model approach gave better results and better described the operational conditions of the plant than ASM1.  相似文献   

14.
Suspended sediment particles contained in inflows of water systems of hydropower plants (HPPs) cause hydro-abrasive erosion of the hydraulic turbines and structures leading to significant maintenance costs, efficiency reductions, and downtime. Relevant parameters such as suspended sediment concentration (SSC), particle size distribution (PSD), shape, and mineralogical composition were measured with an online multi-frequency acoustic instrument and based on manually taken samples from the end of the sand trap of the Toss HPP in the Himalayan region, India. In the laboratory, the samples were analyzed using the gravimetric method, laser diffraction, turbidity, dynamic digital image processing, scanning electron microscope, petrography analysis, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The online instrument and the samples provided measurement results at a single point. To investigate vertical gradients in concentration and particle sizes, additional samples were collected 9 times at 7 relative water depths. The SSC, most particle sizes, and particle shape were found to be evenly distributed over depth except d90, i.e. the diameter which is not exceeded by 90% of the particle mass. d90 measured at 76% of the water depth was in the range of fine sand and was multiplied by 1.05 to obtain an average value representative for the entire depth. Improved methodologies to quantify both particle shape and size in an analytical model for hydro-abrasive erosion are proposed. Also, the PSD measuring performance of laser diffraction and dynamic imaging was studied and similar values of the median particle sizes were obtained from both instruments. Further, multi-frequency acoustic, turbidity and laser diffraction techniques were found suitable for SSC measurement at the test case HPP.  相似文献   

15.
The particle size distributions of fault gouge from the San Andreas, the San Gabriel, and the Lopez Canyon faults in Southern California were measured using sieving and Coulter-Counter techniques over a range of particle sizes from 2 m to 16 mm. The distributions were found to be power law (fractal) for the smaller fragments and log-normal by mass for sizes near and above the peak size. The apparent fractal dimensionD of the smaller particles in gouge samples from the San Andreas fault, the San Gabriel fault and the Lopez Canyon gouge were 2.4–3.6, 2.6–2.9 and 2.4–3.0, respectively. The averageD for the Lopez Canyon gouge was 2.7±0.2, which is in agreement with earlier studies of this gouge using planar 2-D sections. The fractal dimension of the finer fragments from all three faults is observed to be correlated with the peak fragment size, with finer gouges tending to have a largerD. A computer automaton is used to show that this observation may be explained as resulting from a fragmentation process which has a grinding limit at which particle reduction stops.  相似文献   

16.
Total organic carbon(TOC) and grain size distribution(sand,silt,and clay) in the ephemeral Mahi River(western India) sediments were measured to look at their effectiveness in understanding the late Quaternary monsoon conditions.Four sites spread across the alluvial zone and three sites from the estuarine zone were sampled.TOC concentration in the sediments of the alluvial and estuarine zone sites ranged between 0.04 and 0.39%and 0.04 and 0.23%,respectively.It was observed that grain size differed significantly at the alluvial zone sites,whereas an uniform trend was found in the estuarine zone sites.The study indicated that low concentration of TOC and coarse size fractions(sand) in sediments were well correlated with available records of arid/weaker palaeomonsoon periods,whereas higher concentration of TOC and fine grain size fractions(silt + clay) in sediments were well correlated with available records of enhanced palaeomonsoon periods of the ephemeral Mahi River.Uniform concentrations of TOC and fine grain size particles in sediments at the estuarine zone sites are attributed to the backwater in the system,deeper sedimentation,and/or greater decomposition processes.It is concluded that,TOC and grain size distributions in the ephemeraL river sediments are simple and effective parameters to develop an understanding about late Quaternary monsoon conditions in ephemeral rivers.  相似文献   

17.
The release of nitrous oxide during denitrification in activated sludge is influenced by various environmental factors. Experiments with different electron acceptors showed that under anoxic conditions increasing concentrations of nitrate as well as nitrite enhance the production of N2O. The N2O concentration in the gas phase increases for 2 h, then decreases. Nitrite causes a higher release of N2O than nitrate. Acetate in high concentration can stimulate N2O-release. Without addition of acetate nitrate and nitrite reduction are delayed, and hence N2O-release and consumption are much slower. In activated sludge sulfide can play a role as an inhibitor of the nitrous oxide reductase (like in soil and pure cultures), but is inactivated very rapidly. Repeated addition of sulfide can cause a new release of nitrous oxide. At low pH (less than 6.5) denitrification is slightly inhibited and N2O-release is 100 times higher than at pH 7.0 to 8.0. Under oxygen-limiting conditions N2O-release and denitrification starts at 0.5–1.0 mg/L DO, but it is not always accompanied by accumulation of nitrite. Further reduction of the oxygen concentration reduces N2O-release.  相似文献   

18.
The temporal and spatial distribution characteristics of earthquakes in the Ordos block are studied by using historical earthquake data,instrument data of the regional seismic network around the Ordos block and the historical felt earthquake data,and the relationship between seismicity in the Ordos block and seismicity around the Ordos block is discussed. The result shows that the Ordos block is a typical moderate-strong earthquake active region where many M_S≥5.0 destructive earthquakes have occurred. The temporal and spatial distribution of earthquakes in the Ordos block is asymmetrical. The temporal distribution of earthquakes shows a periodic characteristic and the activity of earthquakes in the southeastern Ordos block is higher than in the northwest Ordos block. The M_S≥5.0 moderate size earthquakes in the Ordos block are controlled by the M_S≥6.0 earthquake around the Ordos block.  相似文献   

19.
《国际泥沙研究》2020,35(5):444-454
Turbidity is used as a surrogate for suspended sediment concentration (SSC), and as a regulatory tool for indicating land use disturbance and environmental protection. Turbidity relates linearly to suspended material, however, can show non-linear responses to particulate organic matter (POM), concomitant with changes in particle size distribution (PSD). In the paper the influence of ultra-fine particulate matter (UFPM) on specific turbidity and its association with POM in suspended sediment are shown for alpine rivers in the Southern Alps of New Zealand. The approach was two-fold: a field-based investigation of the relations between SSC, POM, and turbidity sampled during event flow; and experimental work on hydrodynamic particle size effects on SSC, POM, PSD, and turbidity. Specific turbidity changes over event flow and are sensitive to increasing proportional amounts of sand, UFPM, and POM in suspension. Furthermore, the UFPM is the size fraction (<6 μm) where POM increases. The implications of the current study are that the slopes of turbidity-SSC relations are undesirable in locations that may be dominated by cyclic release of POM or distinct pulses of fine-grained material. At locations where the turbidity-SSC slopes approximate 2, the POM proportion is usually <10% of the total suspended load. However, when turbidity-SSC slopes are <1 this is likely caused by high amounts of side-scatter from UFPM concomitant with higher proportions of POM. Thus, the use of turbidity as a proxy for determining SSC may have serious consequences for the measurement of representative suspended sediment data, particularly in locations where POM may be a significant contributor to overall suspended load.  相似文献   

20.
A robust method for characterizing the mineralogy of suspended sediment in continental rivers is introduced. It encompasses 3 steps: the filtration of a few milliliters of water, measurements of X-ray energy dispersive spectra using Scanning Electron Microscopy (SEM), and robust machine learning tools of classification. The method is applied to suspended particles collected from various Amazonian rivers. A total of more than 204,000 particles were analyzed by SEM-EDXS (Energy Dispersive X-ray Spectroscopy), i.e. about 15,700 particles per sampling station, which lead to the identification of 15 distinct groups of mineralogical phases. The size distribution of particles collected on the filters was derived from the SEM micrographs taken in the backscattered electron imaging mode and analyzed with ImageJ freeware. The determination of the main mineralogical groups composing the bulk sediment associated with physical parameters such as particle size distribution or aspect ratio allows a precise characterization of the load of the terrigenous particles in rivers or lakes. In the case of the Amazonian rivers investigated, the results show that the identified mineralogies are consistent with previous studies as well as between the different samples collected. The method enabled the evolution of grain size distribution from fine to coarse material to be described in the water column. Implications about hydrodynamic sorting of mineral particles in the water column are also briefly discussed. The proposed method appears well suited for intensive routine monitoring of suspended sediment in river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号