首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial melting in the middle to lower crustal level produces melts of granitic composition during orogeny. Thrusts play a vital role in their exhumation after consolidation of these granitic melts. In this paper we focus on one such granite along the eastern margin of the Delhi Fold Belt (DFB) rocks near Srinagar, Rajasthan, India. This is the first report of granite within the area and holds a key stratigraphic position in the entire rock package. The said granite is found to be intrusive to the DFB metasediments as well as their basement popularly known as the Banded Gneissic Complex (BGC). We disentangle the deformation fabrics seen within the granite and associated DFB metasediments, suggesting that subsequent to emplacement and consolidation, the granite has co-folded along with the country rocks. Three deformational events could be identified within the DFB metasediments namely, D1D, D2D and D3D. The peak metamorphism was achieved in the D1D event. The granite magma is generated and emplaced late syn-kinematic to D1D and thereafter is deformed by D2D and D3D producing D1G and D2G structural fabrics. These compressive deformations resulted in the collapse of the basin; the combined package of DFB rocks and the granite was thrusted eastwards over the basement rocks. The tectonic transport direction during thrusting is suggested eastwards from our structural analysis. Transverse faults developed perpendicular to the length of the granite have led to partitioning of the strain thereby showing a heterogeneity in the development of fabric within it.  相似文献   

2.
Multiple deformation in all the Precambrian metamorphic-migmatitic rocks has been reported from Rajasthan during the last three decades. But, whereas the Aravalli Group and the Banded Gneissic Complex show similarity in the style and sequence of structures in all their details, the rocks of the Delhi Group trace a partly independent trend. Isoclinal folds of the first generation (AF1) in the rocks of the Aravalli Group had gentle westerly plunge prior to later deformations. These folds show reclined, inclined, and upright attitude as a result of coaxial upright folding (AFla). Superposition of upright folds (AF2) of varying tightness, with axial plane striking N to NNE, has resulted in interference patterns of diverse types in the scale of maps, and deformation of earlier planar and linear structures in the scale of hand specimens. The structures of the third generation (AF3) are either open recumbent folds or reclined conjugate folds with axial planes dipping gently towards NE or SW. Structures of the last phase are upright conjugate folds (AF4) with axial planes striking NNE-SSW and E-W. The Banded Gneissic Complex (BGC) underlies the Aravalli Group with a conglomerate horizon at the contact, especially in southern Rajasthan. But, for a major part of central and southern Rajasthan, migmatites representing BGC show a structural style and sequence identical with those in the Aravalli Group. Migmatization, broadly synkinematic with the AF1 folding, suggests extensive remobilization of the basement. Very rare relict fabric athwart to and overprinted by structures of AF, generation provide tangible evidence for a basement. Although the structures of later phases in the rocks of the Delhi Group (DF3 and DF4) match with the late-phase structures in the Aravalli Group (AF3 and AF4), there is a contrast in the structural history of the early stages in the rocks of the two groups. The folds of the first generation in the Delhi Group (DF1) were recumbent to reclined with gentle plunge towards N to NNE or S to SSW. These were followed by coaxial upright folds of varying tightness (DF2). Absence of westerly trending AF1 folds in the Delhi Group, and extreme variation in plunge of the AF2 folds in contrast with the fairly constant plunge of the DF2 folds, provide evidence for an angular unconformity between the Aravalli and the Delhi Groups. Depending on the importance of flattening attendant with and following buckling during AF2 deformation, the lineations of AF1 generation show different patterns. Where the AF1 lineations are distributed in circular cones around AF2 axes because of flexural-slip folding in layered rocks with high viscosity contrast, loci of early lineations indicate that the initial orientation of the AF1 axes were subhorizontal, trending towards N280°. The orientation of the axial planes of the earlier folds has controlled the development of the later folds. In sectors where the AF, axial planes had N-S strike and gentle dips, or E-W strike with gentle to steep dips, nearly E-W horizontal compression during AF2 deformation resulted in well-developed AF2 folds. By contrast, where the AF, axial planes were striking nearly N-S with steep dips, E-W horizontal compression resulted in tightening (flattening) of the already isoclinal AF1 folds, and probably boudinage structures in some instances, without the development of any AF2 folds. A similar situation obtains when DF4 deformation is superposed on earlier structures. Where the dominant S-planes were subhorizontal, N-S compression during DF4 deformation resulted in either chevron folds with E-W striking axial plane or conjugate folds with axial plane striking NE and NW. In zones with S-planes striking E-W and dipping steeply, the N-S compression resulted in flattening of the earlier folds without development of DF4 folds.  相似文献   

3.
The Paleoproterozoic Liaohe assemblage and associated Liaoji granitoids represent the youngest basement in the Eastern Block of the North China Craton. Various structural elements and metamorphic reaction relations indicate that the Liaohe assemblage has experienced three distinct deformational events (D1 to D3) and four episodes of metamorphism (M1 to M4). The earliest greenschist facies event (M1) is recognized in undeformed or weakly deformed domains wrapped by the S1 schistosity, suggesting that M1 occurred before D1. The D1 deformation produced small, mostly meter-scale, isoclinal and recumbent folds (F1), an associated penetrative axial planar schistosity (S1), a mineral stretching lineation (L1) and regional-scale ductile shear zones. Concurrent with D1 was M2 metamorphism, which occurred before D2 and produced low- to medium-pressure amphibolite facies assemblages. Regionally divergent motion senses reflected by the asymmetric F1 folds and other sense-of-shear indicators, together with the radial distribution of the L1 lineation surrounding the Liaoji granitoids, imply that D1 represents an extensional event. The D2 deformation produced open to tight F2 folds of varying scales, S2 axial crenulation cleavages and ENE-NE-striking thrust faults, involving broadly NW–SE compression. Following D2 was M3 metamorphism that led to the formation of sillimanite and cordierite in low-pressure type rocks and kyanite in medium-pressure rocks. The last deformational event (D3) formed NW-WNW-trending folds (F3), axial planar kink bands, spaced cleavages (S3), and strike–slip and thrust faults, which deflect the earlier D1 and D2 structures. D3 occurred at a shallow crustal level and was associated with, or followed by, a greenschist facies retrograde metamorphic event (M4).The Liaohe assemblage and associated Liaoji granitoids are considered to have formed in a Paleoproterozoic rift, the late spreading of which led to the occurrence of the early extensional deformation (D1) and the M1 and M2 metamorphism, and the final closing of which was associated with the D2 and D3 phases of deformation and M3 and M4 metamorphism.  相似文献   

4.
Structural, stratigraphic and petrologic studies between Amet and Sembal in the Udaipur district of southcentral Rajasthan indicate that all the rocks belonging to the Banded Gneissic Complex, the Aravalli Group and the Raialo Formation have been involved in isoclinal folding on a westerly trend, co-axial refolding, and upright folding on a north to north-northeast trend. There is neither an unconformity nor an overlap between the Aravallis and the Raialos. The conglomerates supposed to mark the erosional unconformity above the Banded Gneissic Complex near Rajnagar is a tectonic mélange of folded and torn quartz veins in mica schist within the Aravalli Group. The Aravalli—Raialo metasediments have been migmatized synkinematically with the first folding to give rise to the Banded Gneissic Complex; the gneissic complex does not have any separate stratigraphic entity. By contrast, there is an undoubted erosional unconformity between the type Aravalli rocks and the underlying Sarara granite to the south. These relations, coupled with the continuity of the Aravalli rocks of Udaipur northward to the metasedimentary rocks of the Sembal—Amet area along the strike, and a comparable structural history, point to granitic rocks of at least two generations in the Early Precambrian of central and southern Rajasthan. Preliminary radiometric dating of rocks of known stratigraphic—structural relationship seems to confirm the presence of granitic rocks of two ages in the Early Precambrian, and of a considerable interval between the deposition of the Aravalli—Raialo rocks and the Delhi rocks. The Udaipur granite, post-dating the first deformation but preceding the upright folding on the northerly trend, provides evidence for granitic activity of a third phase before the deposition of rocks of the Delhi Group.  相似文献   

5.
Deformation of the Champaner Group of rocks that form a part of Southern Aravalli Mountain Belt, western India, occurred during the Grenville orogeny (ca. 1400–935 Ma). Two phases of deformation are recorded: \(\hbox {D}_{1}\), persistent throughout the group and characterised by westerly plunging tight isoclinal folds and \(\hbox {D}_{2}\), a localized phase of deformation associated with shortening of the earlier folds from the eastern margin. Both the phases of deformation are in association with the syn-tectonically emplaced Godhra granite. The present work records rootless calc-silicate folds in granite belonging to the older formation, located at the eastern fringe of the Champaner Group. Field evidences suggest superimposition of Type 2 interference pattern trending NE–SW over rootless Type 0 of varying trends from NW–SE to N–S. The superposed pattern obtained from the field study differs in terms of structural trends with the neighbouring Precambrian stratigraphic units. These stratigraphic units include the Champaner Group to which the study area belongs, the Kadana Formation of the Lunavada Group and Pre-Chamapaner Gneissic Complex. Rootless character of folds found within the study area imply syn-post plutonic emplacement of Godhra granite.  相似文献   

6.
The metasedimentary rocks of the area around Mangpu constitute a portion of the hinge zone of the northern limb of the major synform of Lower Darjeeling Himalaya. The rocks display evidences of multiple deformation and at least three major phases of deformation have been recognized. The time relations between the phases of deformation (D1, D2, D3) and metamorphic crystallization reveal a single major prograde metamorphic event that initiated with the D1 deformation and finally outlasted it. The earlier phase of this metamorphism is essentially regional syn-tectonic lowgrade (greenschist facies) which may be designated (M1, early). This was followed by regional static metamorphism (M1, late) in the post-tectonic phase between D1 and D2 deformations (upper green schist and amphibolite facies). This M1 metamorphism is superposed by later retrogressive metamorphism (M2) during the D2 and D3 deformations (lower greenschist facies). Within the study area four isograds have been delineated by the first appearance of index minerals in the pelitic schists and gneiss which display Barrovian type of metamorphism.  相似文献   

7.
A suite of rocks from Borra Carbonate Granulite Complex (BCGC) in the Eastern Ghats granulite belt displays superposed structures and overprinted mineral assemblages that reveal multiple episodes of tectonothermal reworking of the complex under granulite facies condition. Five distinct episodes of deformation (D1, D2, D3, D4 and D5) and four phases of metamorphism (M1, M2, M3 and M4) are recorded. The signature of the earliest tectonothermal event, D1 is a gneissic foliation (S1) denned by segregation of peak granulite facies mineral assemblages corresponding to prograde M1 metamorphism. M2 metamorphic overprint represents an episode of near-isobaric cooling of the complex under a static condition. D2 represents an episode of ductile deformation manifested by isoclinal folding (F2) and associated extensional structures, within a broad framework of coaxial bulk deformation. The present study reveals that D2 took place subsequent to M2 - Subsequent deformation, D3, produced F3 folds and also deformations of boudins formed during D2. M3, which is synchronous with F3, represents a near isothermal decompression of the BCGC. This was followed by a weak structural readjustment (D4), producing E-W cross folds. The latter was not, however, associated with any recognizable petrological reworking. In the terminal events, deformation (D5) and mineral reactions (M4) were localized along narrow intersecting shear zones. The latter acted as channelways for carbonic and still later hydrous fluid infiltration. The available thermobarometric data from BCGC and other areas of the Eastern Ghats belt reveal that reworking during M2 and M3 ensued in a thermally perturbed regime. The high thermal regime might also have persisted during carbonic fluid infiltration related to terminal reworking (M4).  相似文献   

8.
《Gondwana Research》2001,4(3):337-357
The Precambrian basement of the Schirmacher Hills, Queen Maud Land, East Antarctica has evolved through multiple episodes of deformation and metamorphism. The rocks have suffered at least five phases of deformation. The imprint of the early deformation, D1, is preserved in some mafic isolated enclaves. The second and the third deformations (D2 and D3) are the dominant deformations of this area and produced isoclinal folds with transposition of earlier cleavages. The later deformations, D4 and D5, produced two sets of open, upright folds. Detailed mineralogical, textural, mineral chemical studies and geothermobarometry on khondalite, leptynite as well as different varieties of enderbite and mafic granulites have revealed that the rocks suffered two phases of metamorphism under granulite facies conditions followed by an amphibolite facies overprint. M1 is broadly coeval with D1 only in mafic granulite enclaves within enderbitic gneiss, and took place at ca. 10 Kbar, 900° C. The mafic magma, parental to the enclaves, probably crystallized at 11.2 Kbar. Following post-peak near isobaric cooling, the mafic granulites were transported to shallower levels by the enderbitic magma. M2, recorded in all the lithologies, occurred at ca. 8 Kbar, 800–850°C and synchronous with D2. Post peak M2 evolution of the rocks was characterized by a pressure — temperature drop of 2 Kbar and 200°C respectively and textures indicative of both cooling and decompression are preserved in different rocks. The relative timing of the two, however, cannot be worked out. M3, synchronous with D3, took place at 6 Kbar, 600–650°C and evolved hydrous fluid flux. Correlation with available structural and geochronological data shows that both M1 and M2 could be of Grenvillian event. M3 could well be Pan-African age.  相似文献   

9.
The study involves the characterization of pegmatoidal granite, southeast of Beawar, Ajmer district, Rajasthan. Earlier researchers had described this granite as part of the BGC, basement to the Bhim Group of the Delhi Super Group rocks. However, the present study indicates that it is younger than the rocks of Bhim Group of South Delhi Fold Belt, into which it is intrusive. The intrusion is structurally controlled and the outcrop pattern is phacolithic. The granite had intruded post-D2 deformation of the Delhi orogeny along the axial planes of D2 folds. The intrusion has also resulted in the formation of a contact aureole about the calc gneisses.  相似文献   

10.
The Lesser Himalaya in central Nepal consists of Precambrian to early Paleozoic, low- to medium-grade metamorphic rocks of the Nawakot Complex, unconformably overlain by the Upper Carboniferous to Lower Miocene Tansen Group. It is divided tectonically into a Parautochthon, two thrust sheets (Thrust sheets I and II), and a wide shear zone (Main Central Thrust zone) from south to north by the Bari Gad–Kali Gandaki Fault, the Phalebas Thrust and the Lower Main Central Thrust, respectively. The Lesser Himalaya is overthrust by the Higher Himalaya along the Upper Main Central Thrust (UMCT). The Lesser Himalaya forms a foreland-propagating duplex structure, each tectonic unit being a horse bounded by imbricate faults. The UMCT and the Main Boundary Thrust are the roof and floor thrusts, respectively. The duplex is cut-off by an out-of-sequence fault. At least five phases of deformation (D1–D5) are recognized in the Lesser Himalaya, two of which (D1 and D2) belong to the pre-Himalayan (pre-Tertiary) orogeny. Petrographic, microprobe and illite crystallinity data show polymetamorphic evolution of the Lesser and Higher Himalayas in central Nepal. The Lesser Himalaya suffered a pre-Himalayan (probably early Paleozoic) anchizonal prograde metamorphism (M0) and a Neohimalayan (syn- to post-UMCT) diagenetic to garnet grade prograde inverted metamorphism (M2). The Higher Himalaya suffered an Eohimalayan (pre or early-UMCT) kyanite-grade prograde metamorphism (M1) which was, in turn, overprinted by Neohimalayan (syn-UMCT) retrograde metamorphism (M2). The isograd inversion from garnet zone in the Lesser Himalaya to kyanite zone in the Higher Himalaya is only apparent due to post-metamorphic thrusting along the UMCT. Both the Lesser and Higher Himalayas have undergone late-stage retrogression (M3) during exhumation.  相似文献   

11.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

12.
The Dating rocks and Darjeeling gneisses, which constitute the Sikkim dome in eastern Himalaya, as well as the Gondwana and Buxa rocks of ‘Rangit Window’, disclose strikingly similar sequences of deformation and metamorphism. The structures in all the rocks belong to two generations. The structures of early generation are long-limbed, tight near-isoclinal folds which are often intrafolial and rootless. These intrafolial folds are associated with co-planar tight folds with variably oriented axes and sheath folds with arcuate hinges. Penetrative axial plane cleavage and mineral lineation are related structures; transposition of bedding is remarkable. This early phase of deformation (D 1) is accompanied by constructive metamorphism. The structures of later generation are open, asymmetrical or polyclinal; a crenulation cleavage or discrete fracture may occur. The structures of early generation are distorted by folds of later generation and recrystallized minerals are cataclastically deformed. Recrystallization is meagre or absent during the later phase of deformation (D 2). The present discussion is on structures of early generation and strain environment during theD 1 phase of deformation. The concentration of intrafolial folds in the vicinity of ductile shear zones and decollement or detachment surface (often described as ‘thrust’) may be considered in this context. The rocks of Darjeeling-Sikkim Himalaya display minor structures other than intrafolial folds and variably oriented co-planar folds. The state of finite strain in the rocks, as observed from features like flattened grains and pebbles, ptygmatic folds and boudinaged folds indicate combination of flattening and constrictional type strain. The significance of the intrafolial folds in the same rocks is discussed to probe the environment of strain during progressive deformation (D 1).  相似文献   

13.
The structural geometry of the Anasagar gneiss dome in the axial zone of the South Delhi Fold Belt is controlled by polyphase folding. It is classified as a thrust-related gneiss dome and not as a metamorphic core complex. Four phases of deformation have affected both the gneiss and the enveloping supracrustal rocks. D2 and D3 deformations probably represent early and late stages of a progressive deformation episode in a simple shear regime combined with compression. The contact between the gneiss and the supracrustal rocks is a dislocation plane (thrust) with top-to-east sense of movement which is consistent with the vergence of the D2 folds. The thrust had a ramp-and-flat geometry at depth. At the present level of exposure it is a footwall flat (that is, parallel to the gneissosity in the footwall), but it truncates the bedding of the hanging wall at some places and is parallel at others. The thrusting was probably broadly coeval with the D2 folds and the thrust plane is locally folded by D2. D2 and D3 folds have similar style and orientation as the first and second phases respectively of major folds in the Delhi Supergroup of the South Delhi Fold Belt and these are mutually correlatable. It is suggested that D1 may be Pre-Delhi in age. Available geochronological data indicate that the emplacement of the Anasagar gneiss predated the formation of volcanic rocks in the Delhi Supergroup and also predated the main crust forming event in the fold belt. The Anasagar gneiss and its enveloping supracrustal rocks are probably older than the Delhi Supergroup.  相似文献   

14.
The present work concerns two occurrences of Neoproterozoic volcaniclastic metasediments in the Central Eastern Desert (CED) of Egypt namely Alam occurrence and Atalla occurrence. They are mainly composed of bedded successions of feldspathic and feldspathic-lithic metagreywackes, arkosic metagreywackes, metasiltstones, and subordinate metaconglomerates. The rocks have been subjected mainly to various ductile deformational events (D1 and D2) due to NE–SW compression and later deformation (D3). The D1 deformation is synchronous with greenschist facies metamorphism (M1). The Alam metagreywackes show oceanic arc tectonic setting. The greywackes have clasts of quartz, feldspar, and metamorphic amphibole after pyroxene and show variable abundances of Cr, Ni, and V. Their provenance components are mainly of evolved felsic and mafic (bimodal) island arcs. The rocks are suggested to be deposited in a localized “intra-arc basin.” The metagreywackes of Atalla show tectonic setting affinity similar to continental sland arc or active continental margin. Their geochemical characteristics reflect the presence of felsic rocks as the main sources, together with minor inputs of intermediate rocks and reworked mineral grains of quartz and feldspar. They are deposited in a localized “retro-arc basins” of an active continental margin. The whole sequences of both Atalla and Alam sediments have been subjected to deformation and contemporaneous regional metamorphism during arc-arc or arc-continent collision. Newproterozoic clastic metasedimentary rocks in the CED appear to have been deposited in arc-related basins, including interarc or back-arc basins, intra-arc basins, and retro-arc basin of active continental margin.  相似文献   

15.
《Geodinamica Acta》2001,14(6):345-360
In the southeastern Ötztal basement remnants of eo-Alpine high-pressure metamorphism as well as deformation related to the emplacement of these eclogites are preserved. The eo-Alpine age of the two main ductile deformation phases is constrained by Ar-Ar and Rb-Sr mica cooling ages of about 80 Ma, providing a lower, and by deformed Permo-Mesozoic rocks, providing an upper time limit. While high-pressure minerals (M1) are aligned along structures of the first deformation phase (D1), subsequently grown amphibolite facies minerals (M2) are late- to post-kinematic with respect to the third phase (D3). D1 is characterized by non-coaxial deformation producing an E-W oriented stretching lineation, the younger phases D2 and D3 by folding, where the older set of folds strikes N-S, the younger one E-W. These results imply a basic change of tectonic movement direction during the eo-Alpine event. Structural and petrological evidences favour a two-stage exhumation model, where tectonic exhumation (D1, D2 and D3) is correlated with the first stage, statically overprinted under amphibolite facies conditions (M2). As there is no evidence of significant deformation after this stage, erosion and surface uplift most probably represent the relevant processes for the last part of the exhumation path. During this stage the high-pressure rocks were exhumed from amphibolite facies conditions to the surface.  相似文献   

16.
在滇西南澜沧江构造带东侧、扬子板块西缘中元古代团梁子岩组含有大量的平行于区域面理(S2)的构造热液石英脉,利用LA-ICP-MS对3件石英脉和1件绿片岩中的锆石进行~(206)U/~(238)Pb测年,获得3组明显的组合年龄:395~461Ma、240~260Ma和222~228Ma,大部分集中于222~228Ma。对比研究表明,区域上2期变质变形(M_1D_1、M_2D_2)与获得的锆石年龄有较好的对应性,早期的变质变形(M_1D_1)形成于早古生代(395~461Ma)原特提斯洋盆向东俯冲阶段;晚期的2期变质变形(M_(2a)D_(2a),M_(2b)D_(2b))发生于晚古生代—中生代早期(240~260Ma)古特提斯洋盆向东俯冲阶段和晚三叠世早期(222~228Ma)古特提斯洋盆闭合阶段。晚三叠世早期变质变形(M_(2b)D_(2b))构造热液发生在临沧花岗岩侵位和弧陆碰撞型忙怀组火山岩(229~235Ma)之后,早于小定西组/芒汇河组拉伸期火山岩(210~222Ma),是古特提斯洋与扬子陆块碰撞后的应力松弛阶段俯冲岩片快速折返的证据,同时也反映了古特提斯洋盆在晚三叠世早期之前已经关闭。  相似文献   

17.
Granulites are developed in various tectonic settings and during different geological periods, and have been used for continental correlation within supercontinent models. In this context the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt of northwestern India are significant. The granulites occur as shear zone bounded lensoidal bodies within low-grade rocks of the South Delhi Terrane and comprise pelitic and calcareous granulites, a gabbro-norite-basic granulite suite and multiple phases of granites of the Ambaji suite. The granulites have undergone three major phases of folding and shearing. The F1 and F2 folds are coaxial along NE-SW axis, and F3 folds are developed across the former along NW-SE axis. Thus, various types of interference patterns are produced. The granulite facies metamorphism is marked by a spinel–cordierite–garnet–sillimanite–quartz assemblage with melt phase and is synkinematic to the F1 phase of folding. The peak thermobarometric condition is set at ≥850 °C and 5.5–6.8 kb. The granulites have been exhumed through thrusting along multiple ductile shear zones during syn- to post-F2 folding. Late-stage shearing has produced cataclasites and pseudotachylites. Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb dating of zircon from pelitic granulites and synkinematically emplaced granites indicate that: (1) the sedimentary succession of the South Delhi Terrane was deposited between 1240 and 860 Ma with detritus derived from magmatic sources with ages between 1620 and 1240 Ma; (2) folding and granulite metamorphism have taken place between ca. 860 and 800 Ma, and exhumation at around ca. 800–760 Ma; and (3) the last phase of granitic activity occurred at ca. 759 Ma. This shows, for the first time, that the granulites of the South Delhi Terrane are much younger than those of the Sandmata Granulite Complex of the northern part of the Aravalli Mobile Belt, the Saussar granulites of the Central India Mobile Belt and the Eastern Ghats Mobile Belt. Instead, they show similarities to the Neoproterozoic granulites of the Circum Indian Orogens that include the East African Orogen (East Africa and Madagascar), the Southern Granulite Terrane of India and much of Sri Lanka. We suggest that the South Delhi Basin probably marks a trace of the proto-Mozambique Ocean in NW India within Gondwana, that closed when the Marwar Craton, arc fragments (Bemarivo Belt in Madagascar and the Seychelles) and components of the Arabian-Nubian Shield collided with the Aravalli-Bundelkhand Protocontinent at ca. 850–750 Ma.  相似文献   

18.
The rocks of the Delhi Supergroup, which occur around Barr-Sendra and Phulad-Deogarh regions in Central Rajasthan, show three phases of deformational episodes: (i) phase D1—tight-to-long limbed isoclinal fold (F1); phase D2—open, asymmetric fold (F 2) controlling the map pattern of the formational boundaries; and (iii) phase D3—major warps (F3). Interference between nearly coaxial F1 and F2 on northerly axes produced hook-shaped and crescent patterns whereas superimposition of easterly trending F3 on F2 produced dome-and-basin patterns. The thermal peak was achieved during the second phase of deformation when the rocks were constructively metamorphozed and granites (850−750 m.y.), late synkinematic with respect to second phase of deformation, were emplaced. The sequence of deformation and the structural pattern of the rocks of the Delhi Supergroup in Central Rajasthan strikingly resemble those in northeastern Rajasthan. Structurally the characteristics of the Delhi Supergroup as verified in the entire region from NE to Central Rajasthan are: (a) the same sequence of development of folds, F1, F2 and F3, interspersed with nearly identical phases of recrystallization, (b) hook-shaped interference pattern due to near-coaxial refolding of F1 by F2, and (c) variation in axial plunge of F2 resulting in culminations and depressions. Lastly, phases of the recrystallization history indicates little time gap between F1 and F2, and a considerable gap between F2 and F3.  相似文献   

19.
北祁连加里东期俯冲-增生楔结构及动力学   总被引:27,自引:1,他引:27       下载免费PDF全文
张建新 《地质科学》1998,33(3):290-299
北祁连加里东朝俯冲-增生楔可分为浅部和深部两个单元。浅部单元主要由蛇绿岩、蛇绿混杂岩及深海复理石所组成,极浅变质或没有变质。深部单元主要由HP/LT蓝片岩、透镜状的蛇纹岩、变辉长岩及绿片岩(主要为退变质产物)所组成。普遍遭受HP/LT变质作用和绿片岩相的退变质作用。两个单元同时形成于不同的构造层次,具有类似的原岩特征。在加里东期,俯冲-增生楔共经历4期变形作用(D1,D2,D3,D4)和3期变质作用(M1,M2,M3).从D1→D4反映了俯冲-增生楔从俯冲作用→深部构造板底垫托作用→折返(构造顶蚀)→剥蚀的动力学演化过程。  相似文献   

20.
The Mahneshan Metamorphic Complex (MMC) is one of the Precambrian terrains exposed in the northwest of Iran. The MMC underwent two main phases of deformation (D1 and D2) and at least two metamorphic events (M1 and M2). Critical metamorphic mineral assemblages in the metapelitic rocks testify to regional metamorphism under amphibolite‐facies conditions. The dominant metamorphic mineral assemblage in metapelitic rocks (M1) is muscovite, biotite I, Garnet I, staurolite, Andalusite I and sillimanite. Peak metamorphism took place at 600–620°C and ∼7 kbar, corresponding to a depth of ca. 24 km. This was followed by decompression during exhumation of the crustal rocks up to the surface. The decrease of temperature and pressure during exhumation produced retrograde metamorphic assemblages (M2). Secondary phases such as garnet II biotite II, Andalusite II constrain the temperature and pressure of M2 retrograde metamorphism to 520–560°C and 2.5–3.5 kbar, respectively. The geothermal gradient obtained for the peak of metamorphism is 33°C km−1, which indicates that peak metamorphism was of Barrovian type and occurred under medium‐pressure conditions. The MMC followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal relaxation following tectonic thickening. The bulk chemistry of the MMC metapelites shows that their protoliths were deposited at an active continental margin. Together with the presence of palaeo‐suture zones and ophiolitic rocks around the high‐grade metamorphic rocks of the MMC, these features suggest that the Iranian Precambrian basement formed by an island‐arc type cratonization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号