首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Experiments on the uptake of Zn and Cd by synthetic hydrous Mn oxides were carried out in an ionic medium at pH 3.5 and at pH 4. A slight preference for uptake of Cd2+ over Zn2+ was observed with both birnessite and nsutite, the Cd/Zn ratio being different for each mineral. Subsequently, the desorption of Zn and Cd from the obtained products in artificial seawater was studied. In this medium Cd is desorbed from the Mn oxides to a much higher extent than is Zn. The latter observations can be satisfactorily explained by the large difference of complex formation for the two metals in seawater, slightly counteracted by the preferential uptake of Cd2+ over Zn2+. The order of magnitude of the Zn/Cd ratio in natural manganese nodules is compatible with the ratio calculated on the basis of experimental results, taking fair estimates of the actual inorganic Zn/Cd ratio in seawater and of the pH of deep ocean water.  相似文献   

3.
The sediment–water partitioning of radiolabelled Cd, Hg and Zn has been investigated along an estuarine salinity gradient using samples from the Mersey Estuary, UK. Partitioning was studied using untreated particles, and particles that had been extracted using either a reducing agent (NH2OH.HCl–HOAc) or an oxidising agent (H2O2) in order to qualitatively evaluate the relative roles of Fe–Mn oxides and particulate organic matter (POM), respectively, on metal uptake. The extent of Cd partitioning between sediment and water, parameterised in terms of the distribution coefficient, KD, exhibited a reduction with increasing salinity, regardless of whether or not particles had been digested. However, the magnitude of KD decreased significantly following either chemical treatment, suggesting that both oxides and organic matter are important sorbents for Cd. The KD for Hg in the presence of untreated particles increased with increasing salinity, and chemical reduction of the particles enhanced the uptake of Hg and reinforced this trend. Particle oxidation led to a significant reduction in the KD for Hg, and uptake by the particles decreased with increasing salinity. These observations suggest that POM is considerably more important than Fe–Mn oxides in the removal of aqueous Hg, and that its presence is a prerequisite for enhanced sorption (or salting out) at elevated salinities. The salinity dependence of KD for Zn displayed characteristics of both Cd (below salinities of about 5) and Hg (at greater salinities). However, the magnitude of KD for Zn uptake was relatively insensitive to either chemical treatment, suggesting that oxides, POM, and residual phases contribute to the overall sorption of Zn by estuarine particles. Regression analyses of the metal partition data suggest that sorption to oxides and POM is nonadditive, and that the salinity dependence of metal partitioning results mainly from salinity-controlled interactions between metal and organic matter. Sequential extraction of metals bound to untreated and chemically treated particles in the partitioning experiments indicated that the exchangeability or lability of all metals increased on removal of either oxides or POM. This implies that sorption sites of relatively high energy are destroyed (or become less accessible), or sorption sites of relatively low energy are created (or become more accessible) on chemical treatment. These observations support a conceptual model for the particle surface whose integrity and binding properties are only maintained by the coexistence of and interaction between oxides and organic matter.  相似文献   

4.
The concentrations of Ni, Mn, Cr, Cu, Co, Zn, Fe, Pb and organic carbon have been determined in sediments of the Pagassitikos Gulf. They vary with the ‘sand equivalent’ content, s′, characteristic of the grain size, and are related to it by the equation,
c = c1·k·s′d
in which the constants c1, k and d depend on the element. Consequently, since the metal concentrations in a sample are much less representative of the area from which it has been taken than its ‘sand equivalent’ content, a contour map of the latter constitutes a reliable guide to the general pattern of the elements. Superimposed on it, we detect isolated patches of moderate pollution close to the harbour of Volos and a few, slight, natural anomalies, such as increased Mn and Ni, the former in the east and the latter in the south of the Gulf.  相似文献   

5.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

6.
The density of artificial seawater has been measured with a magnetic float densitometer at 1 atm. from 0 to 40°C (in 5° intervals) and from 0 to 21‰ chlorinity. The densities at each temperature have been fitted to a modified Root (1933) equation, d = d0 + AV′ ClV + BV′ ClV32 and an equation based on the Debye-Hückel limiting law, d = d0 + AV ClV + BV ClV32 + CV ClV2 where AV′, BV′, AV, BV and CV are temperature-dependent constants (related to the ion-water and ion-ion interactions of the major components), d0 is the density of pure water and ClV is the volume chlorinity — ClV = Cl (‰) × density. The densities fit these equations to ±9 p.p.m. from 0 to 25°C and ±18 p.p.m. from 30 to 40°C. The densities for artificial seawater are in good agreement with our measurements of Copenhagen seawater and the results for natural seawater obtained from Knudsen's tables.The expansibilities of the artificial seawater mixtures have been calculated from the temperature dependence of the densities. The resulting expansibilities at each temperature were fitted to the equations α = α0 + AE′ ClV + BE′ ClV32 and α = α0 + AE ClV + BE ClV32 + CE ClV2 where AE′, BE′, AE, BE and CE are constants (related to the effect of temperature on the ion-water and ion-ion interactions of the major components) and α0 is the expansibility of pure water. The expansibilities fit these equations to ±1 p.p.m. and at 35‰ S agree within ±1 p.p.m. with the expansibilities obtained for natural seawater from Knudsen's tables.Theoretical density and expansibility constants have been determined from the apparent equivalent volumes and expansibilities of the major components of seawater by using the additivity principle. The average deviations of the calculated densities and expansibilities are, respectively, ±20 and ±3 p.p.m. over the entire temperature range.  相似文献   

7.
To investigate the factors controlling lead (Pb) concentration and identify the sources of Pb in Yellow Sea sediments along the Korean coast, the concentration of Pb and Pb isotopes in 87 surface and 6 core sediment samples were analyzed. The 1 M HCl leached Pb concentrations had a similar geographic distribution to those of fine-grained sediments, while the distribution of residual Pb concentrations resembled that of coarse-grained sediments. Leached Pb was presumed to be associated with manganese (Mn) oxide and iron (Fe) oxy/hydroxide, while residual Pb was associated with potassium (K)-feldspar, based on good linear relationships between the leached Pb and the Fe/Mn concentrations, and the residual Pb and K concentrations. Based on a ratio–ratio plot with three isotopes (207Pb/206Pb and 208Pb/206Pb) and the geographic location of each sediment, sediments were categorized into two groups of samples as group1 and group2. Group 1 sediments, which were distributed in Gyeonggi Bay and offshore (north of 36.5°N), were determined to be a mixture of anthropogenic and natural Pb originating from the Han River, based on a 208Pb/206Pb against a Cs/Pbleached mixing plot of core and surface sediments. Group 2 sediments, which were distributed in the south of 36.5°N, also showed a two endmembers mixing relationship between materials from the Geum River and offshore materials, which had very different Pb concentrations and isotope ratios. Based on the isotopes and their concentrations in core and surface sediments, this mixing relationship was interpreted as materials from two geographically different origins being mixed, rather than anthropogenic or natural mixing of materials with the same origin. Therefore, the relative percentage of materials supplied from the Geum River was calculated using a two endmembers mixing model and estimated to be as much as about 50% at 35°N. The spatial distribution of materials derived from the Geum River represented that of fine-grained sediments originating from the Geum River. It was concluded that Pb isotopes in sediments could be used as a tracer in studies of the origin of fine-grained sediments along the Korean Yellow Sea coast.  相似文献   

8.
The adsorption of Pb2+ and of Cd2+ ions from calcareous Krka river water of various salinities (3, 14, 20 and 38 psu) on calcite (CaCO3, Merck p.a.) was investigated. Simultaneous adsorption of Pb2+ and Cd2+ ions was studied as well. The results suggest that the two ions are adsorbed at different calcite surface sites; Pb2+ remained firmly bound to calcite at all salinities, whereas Cd2+ was firmly bound at low salinities and released at high salinities. Dissolved natural organic ligands at the freshwater-seawater interface (FSI; at 14 psu) promoted and below the FSI (at 20 psu) decreased the adsorption of Cd2+. The experiments were performed at metal concentrations of 8 × 10−8 mol l−1 and at natural pH values around pH 8. Adsorbed amounts of trace metal ions were determined in filtered samples by differential pulse anodic stripping voltammetry (DPASV) with a three-electrode system, after 24 h of equilibration with calcite. Several adsorption models were tested, such as Freundlich's, Langmuir's and Schindler-Stumm's surface coordination model. Adsorption isotherms belong to S-1 class of empirical adsorption isotherms. None gave reasonable values of adsorption constants. The fractional partitioning of adsorbent to the solid phase when normalized to the quantity of adsorbent present (Kd) declined as solid concentration increased. It was found that the surface charge is not responsible for the observed effect. Instead, aggregate size increased, which effected a loss in surface area. This is a reasonable explanation for the observed S-shaped adsorption isotherms curves.  相似文献   

9.
An investigation of ferric ion complexing has been conducted in synthetic media and seawater at 25°C. Formation constants were potentiometrically determined for the species FeCl2+, FeCl2+, FeOH2+, and Fe(OH)2+ at an ionic strength of 0.68 m. Formation constants for the ferric chloride complexes were determined as Clβ1 = 2.76 and Clβ2 = 0.44. In a study of the reaction Fe3+ + nH2O ? Fe(OH)n(3?n)+ + nH+ in NaClO4, NaNO3 and NaCl the formation constants 1β1and1β2 were shown to be relatively independent of medium when the effects of nitrate and chloride complexing were taken into account. The average values obtained for these constants are 1β1 = 1.93 · 10?3and1β2 = 8.6 · 10?8. Reasonable agreement with these values was obtained when these constants were determined in seawater by accounting for the effects of chloride, fluoride and sulfate complexing.  相似文献   

10.
《Marine Geology》2005,216(3):155-167
A total of 83 cores were collected in the Gulf of Lions continental margins and analysed for 210Pbxs (excess 210Pb) in order to understand sedimentation patterns. Apparent sedimentation rates (ASR) range from 0.65 cm year−1 in the vicinity of the Rhône River mouth to 0.01 cm year−1 in the deep basin. Except for the prodelta area, rates decrease with depth linearly with the water depth. On the slope, ASR do not differ between canyons and open slope, except for the western area where the rates are slightly higher in the Lacaze–Duthiers canyon compared to its adjacent, open slope. In the canyon and open slope areas, mass accumulation rates determined from 210Pbxs profiles (0.10 and 0.08 g cm−2 year−1, respectively) are in good agreement with particulate fluxes calculated from 5 years of near-bottom sediment trap data, even when the trap particle fluxes and the apparent accumulation rates are overestimated in response to resuspension and bioturbation effects.However, differences in sediment trap data, between west and east portion of the slope, are not observed in the sedimentation rates calculated with 210Pbxs. The outer shelf area may have an important role in trapping sediment but it is not sufficiently documented. Sediment surface mixed layer depths decrease with water depth, with a mean value for the whole margin of 8±6 cm.210Pbxs inventories in the sediment are systematically higher than the net 210Pb export flux estimated from the above water column. Over the margin, the ratio between accumulated 210Pb and available 210Pb is about 3, suggesting boundary scavenging effects and advective transport.  相似文献   

11.
M.D Kumar 《Marine Chemistry》1983,14(2):121-131
A model is presented which signifies the role of oxygen (as oxides and hydroxides) in controlling the composition of seawater. Using the regression equations
log KSW=-0.77+0.03ΔO2-M and [M]SW=KSW[M]crust
logt=4.73+0.04ΔO2-M
respective concentration and residence times for the unknown elements can be estimated. Geometric and statistical indices of Legget and Williams (1981) are used to evaluate the accuracy of the model. This reveals from the known values of ΔO2?M that the present model estimates log ty values within a factor of 1.77. The predicted oceanic residence times for Am, Ir, Ra and Rh are 3.6 × 102, 3.7 × 102, 2.2 × 105 and 6.4 × 102 years, respectively.  相似文献   

12.
The Am-241Pu-239 + 240 ratio is at least a factor of two higher in the particulate phases of California coastal waters than the values previously reported for unfiltered waters and sediments. These results are attributed to a greater water solubility for plutonium relative to americium species. The values of the ratio in mussels indicate primarily a particulate uptake of these transuranics. Sorption experiments of these two elements from seawater to glass beads, rayon fibres and filter papers are consistent with an uptake of the particulate phases.  相似文献   

13.
We present inorganic carbon data from the coastal upwelling region west of Vancouver Island, Canada (∼48.5°N,126°W) directly after an upwelling event and during summer downwelling in July 1998. The inner-shelf buoyancy current, the outer-shelf and the slope regions are contrasted for both wind regimes (up- and downwelling). Results show strong biological drawdown of the partial pressure of carbon dioxide (pCO2) in response to upwelling over the outer-shelf. In contrast, measured pCO2 is exceptionally high (pCO2>1000ppm) in the inner-shelf current, where biological uptake of carbon is consistently large. The biological C:N uptake ratio appears to increase when nitrogen becomes limiting (during downwelling), while the POC:PON ratio is relatively constant (slightly lower than the Redfield ratio) suggesting that excess carbon uptake does not go into the POC pool. As expected, large cells dominate where measured primary productivity is greatest. Sub-surface inorganic carbon (and pCO2) is high over the shelf. We suggest that carbon concentrations may be higher in coastal waters because of remineralization associated with high productivity that is confined to a smaller volume of water by bathymetry. At the coast these sub-surface concentrations are more efficiently mixed into the surface (especially during winter) relative to deeper offshore regions. Thus, despite high primary production, coastal waters may not aid in sequestration of atmospheric carbon.  相似文献   

14.
We have investigated Pb concentrations and isotopic compositions in settling particles collected by sediment traps experiments over a period of two years, from May 2005 to April 2007, at two depths, 770 and 5100 m, at station KNOT in the Northwestern Pacific Ocean (44°N, 155°E). To the identify provenances of Pb, the samples were separated into two fractions by chemical leaching techniques, with the leachate expected to contain Pb of anthropogenic origin. Isotopic compositions of Pb and concentrations of Pb, Sc, Mn, La, Yb, and Th were measured by quadrupole ICP-MS. The isotope ratios of leachable Pb in settling particles were 207Pb/206Pb = 0.860 ± 0.001; 208Pb/206Pb = 2.116 ± 0.002 (mean ± 95% confidence intervals), which are similar to those of aerosols in China that are greatly affected by pollution from coal combustion. We estimated the mean contribution from anthropogenic Pb sources to the Pb in settling particles, using the conventional binary (anthropogenic and natural Pb) mixing equation for Pb isotopes, as 90% in the upper trap and 78% in the lower trap. Furthermore, we found a significant negative correlation between the isotope ratios of Pb and concentrations of leachable Mn, normalized to those of leachable Pb, suggesting that manganese oxides play an important role in transporting Pb from the upper layers of the ocean to the deeper layers. Our results support the speculation published in a previous study that Pb might be scavenged by Mn oxides in the Northwestern Pacific Ocean.  相似文献   

15.
Iron solubility equilibria were investigated in seawater at 36.22‰ salinity and 25°C using several filtration and dialysis techniques. In simple filtration experiments with 0.05 μm filters and Millipore ultra-filters, ferric chlorides fluorides, sulfates, and FeOH2+ species were found to be insignificant relative to Fe(OH)2+ at p[H+] = ?log [H+] greater than 6.0. Hydrous ferric oxide freshly precipitated from seawater yielded a solubility product of 1Kso = [Fe3+][H+]?3 = 4.7 · 105. Solubility studies based on the rates of dialysis of various seawater solutions and on the filtration of acidified seawater solutions indicated the existence of the Fe(OH)30 species. The formation constant for this species can be calculated as 1β3 = [Fe(OH)30] [H+]3/[Fe3+] = 2.4 · 10?14. The Fe(OH)4? species is present at concentrations which are negligible compared to Fe(OH)2+ and Fe(OH)30 in the normal pH range of seawater. However, there is at least one other significant ferric complex in seawater above p[H+] = 8.0 (possibly with bicarbonate, carbonate, or borate ions) in addition to the Fe(OH)2+ and Fe(OH)30 species.  相似文献   

16.
The speciation of lead at a site in the South San Francisco Bay was determined using a combination of physical size fractionation and electrochemical analyses. The ‘ total dissolvable ’ Pb was 8·1 nM from analysis of an acidified unfiltered sample. The ‘ dissolved ’ Pb was equal to 0·20 nM (41 ng l−1), only 2·5% of the ‘ total dissolvable ’ Pb. The difference yielded the ‘ particulate ’ Pb equal to 7·9 nM (1·6 μg l−1). Results from crossflow ultrafiltration indicated that almost all (0·19 nM) of the dissolved Pb was ‘ in solution ’ [<10K nominal molecular weight (MW)] and that colloidal Pb (10K MW to 0·2 μm)accounted for onlyc. 1% of the dissolved Pb at this station. This small concentration (0·01 nM) of colloidal Pb may be attributed to the low amount of organic carbon associated with colloid size fraction as determined by dissolved organic carbon analyses.The chemical speciation of lead was determined in the dissolved sample and ultrafiltered sub-sample. Differential pulse anodic stripping voltammetry (DPASV) on a thin mercury film (TMF) rotating glassy carbon disk electrode (RGCDE) was used to distinguish the kinetically labile inorganic species (Pb′) from the Pb-chelated by organic ligands (PbLi). Lead titration results were similar for both samples revealing that Pb′, PbLiand excess unbound ligands were present primarily in the ultrafiltrate, rather than in the colloidal phase. The titration data can be interpreted as dissolved Pb being influenced by two classes of Pb-binding ligands. In the dissolved sample, the concentration of the stronger class of ligands was [L1]=0·89±0·35 nM, with a conditional stability constant ofKcondL1,Pb=3±1×1010M−1. The weaker class was [L2]=12·8±1·9 nM, withKcondL1,Pb=4±1×108 M−1. The presence of these ligands, in excess of the dissolved Pb, resulted in [Pb′]=7±2 pM and [Pb2+]=0·3 pM (62 pg l−1). While less than 2·4% of the ambient Pb was ‘ in solution ’, it existed chiefly in the form of organic complexes with [PbL1]=0·15 nM and [PbL2]=0·03 nM. More significantly, there were large concentrations of unchelated Pb-binding ligands, (Li′), available to buffer the free Pb2+concentration in the event of perturbations in dissolved Pb.  相似文献   

17.
18.
The photolysis of nitrate in seawater by sunlight has been re-examined using abiotic seawater and naturally occurring concentrations. Photochemical formation of nitrite from nitrate was observed. First-order nitrate photolysis rate coefficients calculated from nitrite appearance (corrected for concomitant nitrite photolysis) ranged from 0 to 2.3 yr?1, median 0.7 yr?1. The coefficients did not correlate well with water chemistry, but decreased with increasing light dose. A first-order rate coefficient of 0.4 yr?1 was calculated for the primary photochemical process NO3? + hυ = NO2? + O(3P) under sea surface equatorial insolation and cloudiness conditions. However, no significant nitrate concentration decreases could be detected, suggesting an upper limit for the net first-order nitrate loss rate coefficient of 0.3 yr?1. The data thus imply some conversion in the reverse sense: NO2? + hυ →→ NO3?.If our median rate estimate applies to surface oceanic conditions, nitrate photolysis proceeds at roughly 0.02–0.5% of the rate of N incorporation during primary production. It is thus not a significant NO3-N sink. Since such reactive species as oxygen atoms, nitrogen dioxide, and hydroxyl radicals are produced, the reaction may have significant consequences in seawater. However, nitrite photolysis is almost certainly a more significant process.The results show internal inconsistencies and our rates are markedly different from those calculated using data from other studies. Nitrate photolysis rates are theoretically concentration- and light dose-dependent. Whether these dependencies explain the apparent discrepancies is unclear, as methodological effects may also be involved. The system requires further study.  相似文献   

19.
20.
Profiles of the radioisotopes 210Pb and 137Cs were determined in 15 sediment cores collected from Sagami Bay, Japan. The activities of 210Pbex (unsupported) in core top sediments increased with water depth from 25 dpm g−1 on the upper continental slope off the mouth of Tokyo Bay to an average of 283 dpm g−1 at the deep-sea station SB. The high 210Pb trapping efficiency of settling particles expected from the results of the sediment trap experiment near the SB site suggests that effective 210Pb enrichment in surface sediments may occur during resuspension and lateral transportation of particles via the benthic nepheloid layer on the continental slope. In several cores, 137Cs profiles showed an increase, a distinct peak, and then a decrease to an undetectable level downcore. These profiles can be compared with the temporal change of bomb-produced 137Cs fallout.The mean sedimentation rates estimated by the 210Pbex inventory method, rather than using 210Pbex profiles, ranged from 0.06 g cm−2 y−1 to 0.14 g cm−2 y−1. The average value of the rates in SB cores was calculated to be 0.11 g cm−2 y−1, which was similar to that calculated under the assumption that the age of the 137Cs peak corresponds to its maximum fallout year in 1963.Although 137Cs inventories represented one tenth of the anthropogenic fallout of 137Cs until 1997, they correlated with the increase in 210Pbex inventory. This suggests that the scavenging of refractory 137Cs as well as 210Pb by settling particles in the water column can lead to the formation of a time marker layer even in deep-sea sediment core, such as at the SB site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号