首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

8.
Catechol is one of the most abundant phenolic components of olive mill wastewaters. In this article, the mineralization of this compound in synthetic aqueous solutions by the Fenton and photo‐Fenton processes is studied. It has been found that for 1.44 mM catechol, the total organic carbon of solutions is reduced about 94.4% at best after 60 min of Fenton treatment at optimized conditions of pH 3.0, 0.2 mM Fe2+, 7.09 mM H2O2, and 25°C. A faster and overall mineralization is attained by applying photo‐Fenton with UVA irradiation. o‐Benzoquinone, 1,2,3‐trihydroxybenzene and 1,2,4‐trihydroxybenzene were identified by GC–MS as primary quinonic and polyhydroxylated derivatives. Small amounts of generated carboxylic acids like muconic, maleic, malonic, acetic, oxalic, and formic acids were detected by ion‐exclusion chromatography. The Fe(III) complexes of these acids persist in the medium under Fenton conditions, while their photolysis by UVA light and that of other by‐products account for by the faster degradation and total mineralization achieved in the photo‐Fenton process. A reaction sequence for catechol mineralization by Fenton and photo‐Fenton involving all intermediates detected is proposed.  相似文献   

9.
Decolorization of C.I. Basic Blue 3 (BB3) by oxalate catalyzed photoelectro‐Fenton process based on carbon nanotube‐polytetrafluoroethylene (CNT‐PTFE) electrode as cathode under visible light was studied. A comparison of electro‐Fenton, photoelectro‐Fenton, and photoelectro‐Fenton/oxalate processes for decolorization of the solution containing BB3 has been performed. The results showed that color removal follows the decreasing order: photoelectro‐Fenton/oxalate > photoelectro‐Fenton > electro‐Fenton. Response surface methodology (RSM) was employed to assess individual and interactive effects of the four main independent parameters on the decolorization efficiency. A central composite design (CCD) was employed for optimization of photoelectro‐Fenton/oxalate treatment of BB3. The analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.958) and satisfactory prediction second‐order regression. This study clearly showed that RSM was one of the suitable methods to optimize the operating conditions.  相似文献   

10.
11.
The removal of three basic dyes by adsorption onto bentonite was investigated for single, binary, and ternary solutions in a batch system. Before and after dye adsorption, bentonite samples were analyzed by using X‐ray fluorescence spectrometer, SEM, and Fourier transform IR spectrometry. The D‐optimal design and response surface methodology were applied in designing the experiments for evaluating the interactive effects of each initial concentrations variable of the dyes in binary systems. Predicted values were found to be in good agreement with experimental values, which defined propriety of the model and the achievement of D‐optimal in optimization of adsorption of binary dye systems. The competitive adsorption results showed that the adsorption amount of a dye was suppressed in the presence and increasing concentrations of second or third dye. For mono‐component isotherm modeling, Langmuir and Freundlich models were applied to equilibrium data of single, binary, and ternary dye solutions, while modified Langmuir, Sheindrof–Rebhun–Sheintuch and modified extended Freundlich models were also applied to equilibrium data of binary dye solutions for multi‐component isotherm modeling. The results showed that the Langmuir was the more suitable model for single dye systems while extended Freundlich model fitted best to the experimental data with the lowest error values for multi‐dye systems.  相似文献   

12.
Commercial ZnO, MnO2, and their acid‐treated forms were used as catalysts for oxidative degradation of Orange II dye in water. ZnO and MnO2 were treated with 0.5, 0.75, or 1.0 N aqueous H2SO4. The acid treated oxides were found to be highly effective in bringing about degradation of Orange II in water. As much as 68.7% of the dye in an aqueous solution of 1 mg/L concentration could be degraded with untreated ZnO as the catalyst. The degradation increased to 79.5% with 1.0 N acid treated ZnO as the catalyst when the reaction was carried out at room temperature for 240 min. The catalytic activity was slightly affected by the solution pH in the range of 2.0–8.0. With MnO2 as the catalyst, there was only 12.7% degradation of the dye, but this increased up to 100% when 0.5 N acid treated MnO2 was used as the catalyst. It was found that a catalyst loading of 5.0 g/L of raw and acid‐treated ZnO and a loading of 0.5 g/L of raw and acid‐treated MnO2 could bring about almost 100% degradation of Orange II in water in an interaction time of 240 min at room temperature.  相似文献   

13.
Pharmaceutical compounds, widely produced and used all around the world, are partly responsible for the widespread water pollution in the environment. Carbamazepine (CBZ) is an antiepileptic drug that persists in the environment for many years. In the present study, we used the TiO2/UV, nanoparticulate zero‐valent iron (NZVI), and NZVI/H2O2 treatment processes to compare efficiency of CBZ removal from water. Influence of NZVI loading, H2O2 concentration, TiO2 loading, UV lamp power, and the matrix (distilled water and groundwater) on CBZ removal efficiency was evaluated using full factorial design. Results indicated that the NZVI/H2O2 process oxidized CBZ within 5 min. On the other hand, the NZVI process alone did not reduce CBZ concentration after 120 min of process time. The NZVI/H2O2 process was equally effective in CBZ removal from both distilled water and groundwater whereas the TiO2/UV process was less effective due to the presence of ions in groundwater. CBZ removal efficiency of the TiO2/UV process declined 30% when the matrix was changed from distilled water to groundwater. Negative divalent ions, i.e., and , were the main cause of reduction of CBZ removal efficiency from groundwater. It is likely that these two ions adsorb onto, and consequently prevent the superoxide anion and hydroxyl radical OH? from being generated on, the surface of the TiO2.  相似文献   

14.
15.
16.
This experimental research deals with using steel scrap as a heterogeneous catalyst. This catalyzes the oxidation reaction of real textile dye wastewater based on a modified solar photo‐Fenton oxidation process. Morphologic analysis and mapping of the elementary composition of the steel scrap have been carried out by scanning electron microscopy. The effects of concentration of H2O2, the pH of the solution and the catalyst loading on the degradation of textile dye wastewater are elucidated. Kinetic studies have been performed for the decolorization of wastewater under optimum conditions. It could be concluded that the steel scrap is a potential substitute for ferrous salts as a catalyst for the solar photo‐Fenton reaction.  相似文献   

17.
18.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

19.
20.
Experiments on the degradation of acid orange 7 (AO7) using micron‐sized zero‐valent copper (ZVC) are conducted in acidic aqueous solution under ultrasonic (US) irradiation. The US/ZVC/peroxymonosulfate (PMS) process for AO7 degradation is significantly better than that of an independent system. Based on the characterization of ZVC, it is observed that the corrosion speed of ZVC increases after ultrasound, owing to which a greater amount of Cu+ (0–3.03 mg L?1) and Cu2+ are produced. Exposure to US irradiation increases the available surface area of the catalysts to generate many new reactive sites for the degradation process. The AO7 degradation rate after the addition of a new copper reagent—neocuproine hemihydrate—from 6.33% to 100% proved that Cu+ is the main activator of PMS. Results indicated that free radicals (OH? and SO4??) act as activators of PMS in the process. And higher ultrasound power, lower solution pH, and a larger ZVC dose are favorable for AO7 removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号