首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liner design and lifter geometry in tumbling mills are very important in comminution kinetics and energy consumption. In terms of the parameters of the batch grinding model, the breakage rate function decreases as lifter size increases while the breakage distribution function is independent of the lifter size. However, the specific energy consumption is not a function of lifter size. Reducing the lifter height from 2.54 cm to 0.32 cm increases the production from this mill by 37%. When the mill is operated without any lifters, the charge apparently slips inside the shell resulting in lower breakage kinetics and higher energy consumption.  相似文献   

2.
Ball milling is an energy-intensive unit operation and usually consumes a major proportion of the power drawn by a typical mineral processing plant. Hence, substantial economic benefits can be achieved by optimal design and by operating ball milling circuits under optimum process conditions. This requires an accurate ball mill modelling technique.In the multi-segment ball mill model, the size-dependent material transport within the mill varies systematically with the amount of coarse particles present in each segment. The ore-specific breakage distribution function can be determined from single particle breakage tests conducted using a computer-monitored twin pendulum apparatus. When the ore-specific breakage distribution function is used in the multi-segment, a constant relationship between the breakage rate parameters and mill diameter is observed. Thus, the performance of an industrial ball mill can be adequately described using the ore-specific breakage distribution function together with the systematic variation of the material transport and the breakage rate functions with process conditions and mill diameter, respectively.This ball mill modelling technique is illustrated using a case study on the design of a ball milling circuit for a particular grinding requirement and another case study on modelling the performance of an industrial ball milling circuit.  相似文献   

3.
This paper presents a three dimensional Computational Fluid Dynamics (CFD) model to investigate the flow dynamics of solid–gas phases during fine grinding in an air jet mill. Alpine 100AFG fluidized bed air jet mill is considered for the study and the jet milling model is simulated using FLUENT 6.3.2 using a standard k-ε model. The model is developed in GAMBIT 2.3.16 and meshed by tet/hybrid (T-Grid) and Triangular (Pave) meshes. The effects of operating parameters such as solid feed rate, grinding air pressure and internal classifier speed on the performance of the jet mill are analyzed. The CFD simulation results are presented in the forms of dual phase vector plot, volume fraction of phases and particle trajectories during fine grinding process. The mass of ground feed entering and leaving the cyclone (underflow) is also computed by simulation. The proposed model gives realistic predictions of the flow dynamics within the jet mill. Experiments are conducted on the Alpine 100AFG jet mill to study the particle size, morphology and mass of the ground product. The numerical results are found in good agreement with the experimental results.  相似文献   

4.
A method of parameter estimation is outlined for a two-component grinding-liberation model. The large number of model variables is reduced by using functional forms. The parameters for the functional forms are estimated using a modified Gauss-Newton algorithm. The technique is applied to both synthetic and real experimental data. Parameters estimated from wet grinding batch tests of Illinois No. 6 coal were used to predict mill output for a larger pilot-plant mill. The predictions were found to match the actual mill output within the limits of experimental error.  相似文献   

5.
Grinding mills are commonly used in the Florida phosphate industry to reduce particle size. The corrosion of metallic grinding media and mill liner is a very serious problem, particularly under acidic conditions as encountered in the Florida phosphate fertilizer industry. A statistical Box–Behnken Design (BBD) of experiments was performed to evaluate the effects of individual operating variables and their interactions on the wear rate of high chromium alloy during phosphate grinding. The variables examined in this study included grinding time, solution pH, rotation speed, mill crop load, and solids percentage. The wear tests were conducted using a specially designed grinding mill whose electrochemical potential can be controlled. The most significant variables and optimum conditions were identified from statistical analysis of the experimental results using response surface methodology (RSM). It has been shown that solution pH had the most significant effect on the wear rate. The optimum process parameters for minimum wear rate were solution pH at 8.7, rotation speed at 61 rpm, solid percentage at 65% and crop load at 58%.  相似文献   

6.
After a summary of maximum likelihood (ML) estimation, the application of the ML-method is demonstrated by estimating parameters in a ball mill-hydrocyclone grinding circuit from flow and density measurements. The model with the estimated parameters is used to determine the time propagation of mill contents and size distribution.  相似文献   

7.
The grindability of a diasporic ore was studied by wet grinding in a laboratory ball mill and its breakage parameters were determined based on the population balance model (PBM). Four different feeds with unnatural size distributions were designed to save grinding and sieving work. It was found that three size-intervals fitted the first-order breakage, but the coarsest interval did not. The non-first order breakage was most probably caused by the heterogeneity of the material. The heterogeneity was then confirmed by experiments. The breakage rate and the breakage distribution parameters were back calculated by treating the non-first order breakage as two linear segments according to the grinding time. The back-calculated breakage rates were in good agreement with the values calculated directly from the experimental data, and non-normalizable breakage distribution was observed. The model with the obtained parameters simulated the experimental product size distributions with good accuracy. These findings are valuable to the simulation and optimization of the industrial grinding processes of diasporic ores.  相似文献   

8.
A centrifugal mill is a high-power intensity media mill that can be used for ultra-fine grinding, employing centrifugal forces generated by gyration of the axis of the mill tube in a circle. The mill charge motion is quite different depending on the ratio of the gyration diameter to the mill diameter (G / D ratio), varying from a motion similar to that of a conventional tumbling media mill to that of a vibration mill. In this study, a centrifugal mill was constructed with an arrangement where the gyration diameter could be readily adjusted. The batch grinding characteristics of three different minerals (limestone, talc and illite) in water with dispersing agent were investigated at various G / D ratios. It was found that the optimum G / D ratio in terms of the specific energy consumption to give a desired fineness of product was different for the three minerals. This was due to their different reactions to the breakage mechanisms provided by the mill charge motion at varying G / D ratios. The size distributions became progressively narrower at increased grinding times, and particles finer than about 0.1 μm were not detected even for prolonged grinding times. Measurement of specific surface areas indicated that this was not due to an artifact of the size measurements by laser diffractometry. This implies that there is a limitation in which particles finer than 0.1 μm are not produced under the conditions tested in this type of mill, but further investigation is needed for experimental verification of this limit of comminution.  相似文献   

9.
Dimensionless selection functions for the grinding of material in continuous gratedischarge mills can be scaled in terms of normalized quantities of feed rate, geometric mean size of the particles and the mill length-to-diameter ratio. Simulations using the scale-up criteria together with the lumped-parameter grinding model yield results for mills of different lengths and operating at different feed rates that are in excellent agreement with the observed values.  相似文献   

10.
A detailed comparison is made of the capability of population balance models to predict steady-state product size distributions of a pilot-scale ball mill. The mill was operated at 60% solids with feed rates of crystalline limestone ranging from 90 to 450 kg/hr (200 to 1000 lb/hr). Two types of lumped parameter models are compared: a linear model in which size reduction parameters are independent of size consist and a nonlinear model in which these parameters are dependent on size consist. The nonlinear model is based on an empirical correlation between rate of breakage and size consist in the mill. Results indicate that the nonlinear model gives the most accurate predictions of product size distributions, however, at the cost of significantly more complex computations.  相似文献   

11.
Hematite concentrate was mechanically treated using different milling machines and experimental conditions in air atmosphere. The changes in phase constitution, particles size, specific surface area, lattice parameters and X-ray amorphous phase fraction of activated hematite were determined. It was found that the agglomeration of the particles take place during extended milling with accessible pores for Nitrogen gas. The higher media surface brought about the largest specific surface area whatever milling devices used. After 9 h of grinding with higher media surface, the maximum and minimum specific surface area resulted from the grinding in the tumbling and vibratory mills, accounting for 6.83 m2/g and 18.42 m2/g, respectively. For the same grinding condition, tumbling mill produced the lowest X-ray amorphous phase. The maximum X-ray amorphous material estimated around 85% from the grinding in the planetary mill with higher media surface for 9 h of milling.  相似文献   

12.
Using plug flow material transport and a cumulative-basis rate-of-breakage parameter, overall size reduction through the closed-circuit ball mills at the Pine Point and Gibraltar concentrators was simulated over a wide range of operating conditions. The rate-of-brakage parameter was related to particle size by a power law, the exponent (n) being: Pine Point, n = 1.043 ± 0.026, and Gibraltar, n = 0.747 ± 0.020. The success of this approach probably stems from the high (> 1.5) circulating load ratios encountered.By analogy individual mineral size reduction at Pine Point was examined. A similar rate-of-breakage parameter versus size relationship was found. Pyrite was the hardest mineral, but fine galena was equally resistant. However, the approximation that mineral and overall rates of breakage were the same gave an adequate fit to the mineral size reduction. This was emphasized by combining with a cyclone model to simulate cyclone overflow mineral size distribution. A more accurate cyclone model is shown to be more important in simulating mineral deportment at Pine Point.Complementary laboratory batch grinding tests were conducted on rod mill discharge and ball mill feed samples. Sufficient agreement with the first-order hypothesis was observed to analyse the rate-of-breakage parameter. The kinetics was similar for both samples and in turn similar to the plant-derived kinetics in terms of relative mineral rates-of-breakage and the relationship of the rate-of-breakage parameter with particle size.  相似文献   

13.
Recent papers on the role of grinding aids in wet ball mills indicate that certain polymeric aids favorably act by altering pulp rheology, leading to improved production rates at high pulp densities. Analysis of recent data indicates that there can be an improvement in terms of the production of fine particles per unit time, but on the other hand, the production per unit of expended energy remains the same. Our experiments indicate that there is a critical pulp viscosity above which the grinding media tend to centrifuge because the balls cannot be detached from the mill wall during the time of rotation. Under these conditions the mill power draft decreases and a smaller amount of fines is generated. The polymeric additives are able to reduce the pulp viscosity to a value less than the critical value so that the balls no longer centrifuge and the mill draws full power. From an analysis of the force field acting on a ball inside the mill, this critical viscosity can be estimated and the results are in agreement with experiment.  相似文献   

14.
The performance of the secondary ball mill at the New Broken Hill Consolidated Ltd. concentrator is analysed using the perfect mixing model and an ore-specific breakage distribution function. This function was determined from single-particle breakage tests using a computer-monitored twin pendulum apparatus.The ratio of the breakage rate to the normalized discharge rate, r/d*, determined for the ball mill using the ore-specific breakage distribution function for a range of grinding conditions is related to the mill power consumption. The mill power consumption is related to the percentage of mill volume occupied by the ball charge and to the percentage of solids in the mill feed.  相似文献   

15.
Industrial minerals of a high degree of fineness such as kaolinite, calcite and barite are used to an increasing extent in the chemical industries as filling material in the manu-facturing of paper, paints and plastics or as ingredients of ceramic products. Grains smaller than 5 μm can be produced by dry grinding in a jet mill or by wet grinding in drum mills. To avoid impurities due to wear, these mills are lined with rubber or plastic and ceramic balls are used as grinding bodies.Our investigations in a jet mill show that the fineness of the ground product depends on the feed rate and on the air volume. The grain sizes received in the drum mill are influenced by feed rate, pulp density, speed of rotation and by the grinding bodies (density, size).REM-photographs of mill discharge in the grain-size ranges 10-5 μm and below 5 μm indicate that in both the grains mainly show crystal planes as boundaries. After dry grinding the grains show smooth and clean faces; thus is traced back to the impact effect of the air streams. In wet grinding the fine grains are very prone to form agglomerates.  相似文献   

16.
Batch wet grinding of zeolite was studied with emphasis on a kinetic study in a laboratory size steel ball mill of 200 mm diameter. The breakage parameters were determined by using the single sized feed fractions of − 850 + 600 µm, − 600 + 425 µm and − 425 + 300 µm for the zeolite samples. The Si (specific rate of breakage) and Bi,j (primary breakage distribution) values were obtained for those feed size fractions in order to predict the product size distributions by simulation for comparison to the experimental data. The specific rates of breakage values for wet grinding in the first-order breakage region were higher than the dry values reported previously by a factor 1.7 at the same experimental conditions, but the primary breakage distribution (Bi,j) values were approximately the same. The simulations of the product size distributions of zeolite were in good agreement with the experimental data using a standard ball mill simulation program. The wet grinding of zeolite was subjected to slowing-down effect in the mill at 2 min of grinding, corresponding to an 80% passing size of about 400 µm. On the other hand, the slowing down effect in the dry grinding of zeolite was also seen at 4 min of grinding. In addition, effects of some operational parameters on dry and wet grinding of zeolite were determined by simulation using the breakage parameters obtained experimentally.  相似文献   

17.
The Magotteaux Mill® system was used to quantify the galvanic interaction between four types of grinding media (mild steel, 15% chromium, 21% chromium, and 30% chromium media) and arsenopyrite, in situ of the mill. The galvanic current was determined from the polarization curves of individual electrodes, in situ of the mill. The high chromium media had a significantly weaker galvanic interaction with arsenopyrite, and produced a very much lower amount of oxidized iron species in the mill discharge than mild steel medium. Increasing the dissolved oxygen in the mill slurry enhanced galvanic interaction. A theoretical model was developed to describe the relationship between galvanic current and oxidized iron species in the slurry, as measured by EDTA extraction. The electrochemical data were correlated with the measurement of oxidation products after grinding under different conditions. The stronger the galvanic interaction, the higher the amount of hydrophilic oxidized iron species in the mill discharge.  相似文献   

18.
This paper presents the experimental results of the mechanical production of silica and carbonate colloidal particles below 100 nm using two types of stirred bead mills (i.e., DCP Superflow 12 and PML H/V). It is shown that the stirred bead mill with very small beads can be used as an efficient equipment for the production of the colloidal particles in nanoscale from the feed materials of several microns in sizes at high energy consumptions. The DCP Superflow mill with high power densities is superior for the effective size reduction and production rate, compared to the conventional PML H/V mill with lower power densities. The smaller particles could be produced by the DCP Superflow mill at the same level of high energy inputs as from the PML H/V mill. The “grinding limit” for the processes in the mills has been discussed.  相似文献   

19.
This study deals with the effect of mechanical treatment, using vibrating mill, on the mineralogy and structure of apatite and associated gangue minerals (dolomite, calcite, quartz, pyrite and gypsum) in Abu-Tartour phosphate ore, Egypt. The evolution of mineralogy, crystallinity and deformation mechanism were evaluated with different techniques (XRD, DTA, TGA and FT-IR). Data obtained using these techniques give a good picture about the mechanochemical behavior of the different components in the ore. X-ray diffraction (XRD) indicated that the mineralogy has been changed quantitatively at short time grinding (30 min). After 45 min of grinding, the sample contained mainly carbonate apatite, quartz and pyrite. On the other hand, dolomite mineral disappeared, while calcite was partially transformed into aragonite. This transformation increased with increasing grinding time. Both Fourier Transform Infrared (FT-IR) and differential thermal analysis (DTA) analyses revealed that remarkable changes in the structural groups have occurred after 45 min of grinding. After 75 min of grinding, the carbonate in the apatite mineral partially decomposed and tricalcium phosphate formed instead. The formation of that simple form (tricalcium phosphate) may be another reason, besides surface area, for increasing the reactivity of phosphate ore by grinding. Scanning electron micrographs (SEM) revealed some idea about the grinding mechanisms of Abu-Tartour phosphate using vibrating mill. They indicate that the different minerals are ground differently. The apatite minerals are ground mostly by abrasion mechanism, while the carbonate minerals are ground mostly by compression. Also, these minerals are ground with different rates, where dolomite is ground faster than calcite, which are referred to the crystal lattice.  相似文献   

20.
The conversion factor for specific rates of breakage, to change from results in a 200-mm diameter laboratory mill with 25.4-mm diameter balls, at Bond filling conditions, to a 4-m diameter production cement mill was found to be 2.75. The residence time distribution of the 10-m long, 2-compartment production mill was equivalent to 10 equal fully-mixed reactors in series, with a mean overall residence time of 5.58 min. A mathematical simulation of the mill circuit using experimental separator selectivity values gave a reasonably close match between simulated and experimental size distributions at various points in the circuit.The steady-state simulation model was used to predict how design schemes for different operation conditions would influence the product size distributions and output rates, assuming that the discharge diaphragm could be redesigned to preserve design mill filling conditions at different circulating loads. It was concluded that the increase of circuit output from the breakage view-point due to separation and rejects recycle was slight, and that improved separator efficiency to produce the same product would not result in significant increase in output, primarily because the size distribution of the finish product is close to that predicted from open-circuit operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号