首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A suite of synthetic titanomagnetites were prepared with compositions Fe2.6?δTi0.4AlδO4 and Fe2.4?δTi0.6AlδO4 (δ = 0, 0.1, 0.2 in both cases). Ball-milling of the synthesized samples produced material in the magnetic monodomain state as indicated by hysteresis loops and the Lowrie-Fuller test. The coercive force of the specimens depends on the Al concentration and lies in the range 1–2 kOe. The TRM induced in the samples is correspondingly “hard”. The low-field (0–1 Oe) TRM acquisition curve is linear. The higher field TRM-H curve is not in agreement with either monodomain or two-domain theoretical models.  相似文献   

2.

Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to the strength of the winter monsoon because post-depositional weathering processes have significantly changed the grain size of original eolian particles. Here, non-weathered loess samples were separated into eight different particle fractions, and major chemical elements were determined in order to establish a geochemical indicator of original eolian grain size. The results show that SiO2 and Al2O3 contents and the SiO2/Al2O3 ratio in different fractions vary regularly with grain size, and that a good linear relation exists between the SiO2/Al2O3 ratio and grain size for the fractions <50 μm. Because Al and Si are among the most stable elements and pedogenic processes in the Loess Plateau cannot affect the SiO2/Al2O3 ratio, this index can be used to reflect the grain size of original eolian particles. Application of this index in the Weinan and Luochuan loess sections of the last climatic cycle shows that SiO2/Al2O3 is in good agreement with median grain size (Md) in the loess units. On the contrary, SiO2/Al2O3 has documented a series of fluctuations in the soil units that are not clearly indicated by the grain-size changes of bulk samples.

  相似文献   

3.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

4.
A heterogeneous chemical model is developed by coupling aerosol, gas-phase and liquid-phase chemical model. SO2 oxidation rates on the aerosol surface are calculated and the influence of some factors is discussed. Model simulations indicate that SO2 heterogeneous oxidation rates are sensitive to the mass concentration and chemical composition of aerosols, relative humidity, initial values of SO2 and H2O2. The heterogeneous chemical model is coupled with a Eulerian deposition model. Model results show that oxidation of SO2 on the aerosol surface is found to reduce SO2 levels by 5%–33%, to increase SO 4 2- - concentrations by 8%–50% in the surface layer. Project supported by the National “85-912” Key Science and Technology Project.  相似文献   

5.
Four-hundred and twenty-one analyses of quartz-normative, peralkaline, extrusive rocks have been collected from the literature and from unpublished sources and are used to examine chemical variation in this group of rocks. Comparisons are particularly made between the full body of data and the variations recorded in the non-hydrated obsidians alone byMacdonald andBailey (1973). It is argued that the compositions of the magmas which formed these obsidians and those which subsequently crystallised were similar as regards the major oxides SiO2, Al2O3, FeO + Fe2O3, Na2O and K2O. Marked variations in the abundances of the minor oxides CaO and TiO2 are shown to be a result of geographical location. Small but significant differences in the distribution of Al and Fe as a function of normative quartz can be recognised between various pantelleritic suites. A new classificatory scheme is proposed, based on the iron (as FeO) and Al2O3 contents. This is simpler than previously employed normative classifications, is more applicable to crystalline rocks, and, happily, in 95 % of cases gives the same rock name as the normative system.  相似文献   

6.
Major and trace element (Rb, Sr, Ba, Zr, Y, Nb, Ni, Co, V, Cr) data are presented for 11 spinifex-textured peridotites (STP) and a number of high-magnesian and low-magnesian tholeiitic basalts. The STP, representing high-magnesian liquids, come from the Yilgarn Block of Western Australia, Munro Township in the Abitibi Belt of Canada and one sample from the Barberton area of South Africa. All of the basaltic samples come from the Yilgarn Block.The STP and high-magnesian rocks are considered to belong to the komatiite suite (1, 2) despite their low CaO/Al2O3 ratios. It is argued that the high values (about 1.5) reported for this ratio from the Barberton area can be explained by a combination of factors, viz. garnet separation, Al loss or Ca addition during metamorphism. The processes can be evaluated using CaO/TiO2, Al2O3/TiO2 ratios, the REE group and trace elements (e.g. Y, Sc). It would appear that most STP from other Archaean belts do not have abnormal CaO/Al2O3 ratios.The STP display close to chondritic ratios for Ti/Zr, Zr/Nb, Zr/Y, and TiO2/Al2O3 and are considered to represent liquids produced by large amounts of partial melting of the Archaean mantle. The data suggest that virtually all phases other than olivine were removed by melting during the production of STP liquids. In the STP, Ti/V, Ti/P ratios are non-chondritic, suggesting original depletion and/or incorporation into the core.For lower levels of partial melting, including mid-ocean ridge basalts (MORB) non-chondritic ratios are exhibited by Zr/Y, TiO2/Al2O3, TiO2/CaO, suggesting controlling phases in the residue for Y, Ca, Al. It is apparent that for STP, Cr is not being controlled, indicating the absence of chromite in the residual. However, at about 15% MgO the data suggest that chromite becomes a residual phase.The transition metals, with the exception of Mn, have higher abundances in Archaean basaltic rocks than in MORB. This is interpreted as being mainly due to more extensive partial melting of the mantle in the Archaean, as a result of higher temperatures.It is suggested that the generation of STP liquids with about 32% MgO is due to upwelling mantle diapirs which probably originated at depths greater than 400 km and at temperatures in excess of 1900°C.Modern equivalents to Archaean greenstone sequences are lacking. The closest tectonic analogue would be the development of oceanic crust within a rifted continental block.  相似文献   

7.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

8.
Major and trace elements are presented for the late Paleozoic radiolarian cherts, which were spatially associated with the NE Jiangxi ophiolite melange. These chert samples show relatively low SiO2 (78.40%-89.28%) and high Al2O3 (3.42%-11.02%). Low Si/Al ratios (6.3-23) and tight negative correlation between Si/Al and Al2O3 of the samples indicate that they are muddy cherts containing high and variable contents of pelitic detritus. Geochemically, they are characterized by Al2O3/(Al2O3+Fe2O3) = 0.51-0.90, shale-normalized Lan/Cen = 0.76-1.11, Ce/Ce* = 0.91-1.22, V<20μg/g, V/Y<2.6 and Ti/V>40, resembling those of cherts formed in the continental margin regimes. It is therefore concluded that these late Paleozoic radiolarian muddy cherts were most likely formed in a continental margin regime, and not genetically related to the ophiolite suite in NE Jiangxi. It is also unlikely that an oceanic basin existed between the Yangtze and Cathaysia blocks during the late Paleozoic.  相似文献   

9.
In a diamond-anvil pressure cell coupled with laser heating, the system enstatite (MgSiO3)-pyrope (3 MgSiO3 · Al2O3) has been studied in the pressure region between about 100 and 300 kbar at about 1000°C using glass starting materials. The high-pressure phase behavior of the intermediate compositions of the system contrasts greatly with that of the two end-members. Differences between MgSiO3 and 95% MgSiO3 · 5% Al2O3 are especially remarkable. The phase assemblages β-Mg2SiO4 + stishovite and γ-Mg2SiO4 (spinel) + stishovite displayed by MgSiO3 were not observed in 95% MgSiO3 · 5% Al2O3, and the garnet phase, which was observed in 95% MgSiO3 · 5% Al2O3 at high pressure, was not detected in MgSiO3. These results suggest that the high-pressure phase transformations found in pure MgSiO3 would be inhibited under mantle conditions by the presence even of small amounts of Al2O3 (?4% by weight). On the other hand, pyrope displays a wide stability field, finally transforming at 240–250 kbar directly to an ilmenite-type modification of the same stoichiometry. The two-phase region, within which orthopyroxene and garnet solid solutions coexist, is very broad. The structure of the earth's mantle is discussed in terms of the phase transformations to be expected in a simple mixture of 90% MgSiO3 · 10% Al2O3 and Mg2SiO4. The seismic discontinuity at a depth of 400 km in the earth's mantle is probably due entirely to the olivine → β-phase transition in Mg2SiO4, with the progressive solution of pyroxene in garnet (displayed in 90% MgSiO3 · 10% Al2O3) occurring at shallower depths. The inferred discontinuity at 650 km is due to the combination of the phase changes spinel → perovskite + rocksalt in Mg2SiO4 and garnet → ilmenite in 90% MgSiO3 · 10% Al2O3. The 650-km discontinuity is thus characterized by an increase in the primary coordination of silicon from 4 to 6. A further discontinuity in the density and seismic wave velocities at greater depth associated with the ilmenite-perovskite phase transformation in 90% MgSiO3 · 10% Al2O3 is expected.  相似文献   

10.
Infrared and X-ray radiation data indicate that the effect of pressure on Na-Al-Si-O quenched melt is to change the coordination number of trivalent aluminum ions from four to six. This conclusion is based upon an observed decrease in the intensity of the infrared vibration involving a “bridging” oxygen in the polymer structure and a shift in both Al Kα (7 × 10?4Å) and Al Kβ (20 × 10?4Å) radiation. The amount of AlIV or AlVI seems to be a continuous function of the pressure at which the melt was formed and is thus independent of the coordination change effected at high pressure in solids crystallized from the NaAlSi2O6 composition used in this study. The importance of the continuous shift of coordination number of aluminum ions in silicate melts at high pressure is discussed. The change in coordination of Al would also be expected in natural silicate melts (magmas) at high pressures.  相似文献   

11.
Aluminum incorporation into the high pressure polymorph of TiO2 with the structure of α-PbO2 has been studied from 10 to 20 GPa and 1300 °C by XRD, high-resolution 27Al MAS-NMR and TEM. Al-doped α-PbO2 type TiO2 can be recovered at atmospheric pressure. Al2O3 solubility in α-PbO2 type TiO2 increases with increasing the synthesis pressure. The α-PbO2 type TiO2 polymorph is able to incorporate up to 35 wt.% Al2O3 at 13.6 GPa and 1300 °C, being the substitution of Ti4+ by Al3+ on normal octahedral sites the mechanism of solubility. The transition to the higher pressure TiO2 polymorph with the ZrO2 baddeleyite structure, Akaogiite, has not been observed in the quenched samples at room pressure. The microstructure of the recovered sample synthesized at 16 GPa and 1300 °C points to the existence of a non-quenchable aluminum titanium oxide phase at these conditions.  相似文献   

12.
At 30 kbar, calcite melts congruently at 1615°C, and grossularite melts incongruently to liquid + gehlenite (tentative identification) at 1535°C. The assemblage calcite + grossularite melts at 1450°C to produce liquid + vapor, with piercing point at about 49 wt.% CaCO3. Vapor phase is present in all hypersolidus phase fields except for those with less than about 7% CaCO3 or 8% Ca3Al2Si3O12. These results, together with known liquidus data for CaO—SiO2—CO2 and inferred results for CaO—Al2O3—CO2 and Al2O3—SiO2—CO2, permit construction of the position of the CO2- saturated liquidus surface in the quaternary system, and estimation of the positions of liquidus field boundaries separating some of the primary crystallization fields on this surface. The field of calcite is separated from those for grossularite and quartz by a field boundary with about 50% dissolved CaCO3. Crystallization paths of silicate liquids in the range Ca2SiO4—Ca3Al2Si3O12—SiO2, with some dissolved CO2, will terminate at a quaternary eutectic on this field boundary, with the precipitation of calcite together with grossularite and quartz, at a temperature below 1450°C. Addition of Al2O3 to CaO—SiO2—CO2 in amounts sufficient to stabilize garnet thus causes little change in the general liquidus pattern as far as carbonates and silicates are concerned. With addition of MgO, we anticipate that silicate liquids with dissolved CO2 will also follow liquidus paths to fields for the precipitation of carbonates; we conclude that similar paths link kimberlite and some carnbonatite magmas.  相似文献   

13.
We estimate average compositions of near-primary, ‘reference’ ocean island basalts (OIBs) for 120 volcanic centers from 31 major island groups and constrain the depth of lithosphere–asthenosphere boundary (LAB) at the time of volcanism and the possible depth of melt–mantle equilibration based on recently calibrated melt silica activity barometer. The LAB depth versus fractionation corrected OIB compositions (lava compositions, X, corrected to Mg# 73, XOIB#73, i.e., magmas in equilibrium with Fo90, if olivine is present in the mantle source) show an increased major element compositional variability with increasing LAB depths. OIBs erupted on lithospheres < 40 km thick approach the compositions (e.g. SiO2#73, TiO2#73, [CaO/Al2O3]#73) of primitive ridge basalts and are influenced strongly by depth and extent of shallow melting. However, XOIB#73 on thicker lithospheres cannot be explained by melt–mantle equilibration as shallow as LAB. Melt generation from a somewhat deeper (up to 50 km deeper than the LAB) peridotite source can explain the OIB major element chemistry on lithospheres ≤ 70 km. However, deeper melting of volatile-free, fertile peridotite is not sufficient to explain the end member primary OIBs on ≥ 70 km thick lithospheres. Comparison between XOIB#73 and experimental partial melts of fertile peridotite indicates that at least two additional melt components need to be derived from OIB source regions. The first component, similar to that identified in HIMU lavas, is characterized by low SiO2#73, Al2O3#73, [Na2O/TiO2]#73, and high FeO?#73, CaO#73, [CaO/Al2O3]#73. The second component, similar to that found in Hawaiian Koolau lavas, is characterized by high SiO2#73, moderately high FeO?#73, and low CaO#73 and Al2O3#73. These two components are not evenly sampled by all the islands, suggesting a heterogeneous distribution of mantle components that generate them. We suggest that carbonated eclogite and volatile-free, silica-excess eclogite are the two most likely candidates, which in conjunction with fertile mantle peridotite, give rise to the two primitive OIB end members.  相似文献   

14.
Although the CaO/Al2O3 ratio of komatiites has been regarded as one of the distinguishing features of these rocks, a comparison of various komatiite and oceanic tholeiite analyses suggests that there is a continuum of ratios between the two. The extremely high MgO values of peridotitic komatiites suggest that they are the result of high degrees of partial melting of the mantle, leaving a harzburgitic residuum depleted in CaO and Al2O3, and hence preserving in the melt the original CaO/Al2O3 ratio of the parental material. Available chemical models of the mantle have CaO/Al2O3 ratios too low to explain the origin of komatiite by such a process. Shallow-level melting of a layered mantle in which clinopyroxene content decreases and garnet content increases with depth, may explain the chemistry of komatiites and related ultrabasic lavas.  相似文献   

15.
Nonaqueous phase liquid (NAPL)‐impacted lower permeability layers in heterogeneous media are difficult to fully remediate and can act as persistent sources of groundwater contamination through diffusive emissions to transmissive aquifer zones. This work investigated the benefits of partial remediation involving treatment focused near the high‐low permeability interface, with the performance metric being emissions reduction. A sequential base‐activated persulfate (S2O8 2?) delivery treatment strategy was studied in this work, involving 13–14 d deliveries of 10% w/w sodium persulfate (Na2S2O8) and 14–28 d deliveries of 19 g/L sodium hydroxide (NaOH). Treatment and control experiments were conducted in 1.2‐m wide × 1.2‐m tall × 5‐cm thick physical model tanks containing two soil layers differing in hydraulic conductivity by three orders of magnitude. The top 10 cm of the lower permeability layers contained 7400–7800 mg‐NAPL/kg‐soil; the NAPL was comprised of benzene, toluene, ethylbenzene, p‐xylene, o‐xylene, n‐propylbenzene, and 1,3,5‐trimethylbenzene (TMB) mixed in octane. Approximately 0.1 g‐Na2S2O8 was delivered per cm2‐interface area over 13–14 d. The S2O8 2? and SO4 2? concentration profiles suggest higher oxidant reaction rates when NaOH is delivered prior to, rather than after Na2S2O8. After 264 d and two treatments, hydrocarbon emissions from the NAPL source were reduced by 60% to 73% compared to a no‐treatment control tank. The incremental benefit of the second treatment was only about 10% of the effect of the first treatment.  相似文献   

16.
MgSiO3, ZnSiO3, MgGeO3, MnGeO3, and ZnGeO3 are the only silicates and germanates known to crystallize in the ilmenite-like structure at high pressures and high temperatures. With the exception of the zinc compounds, the above-mentioned ilmenites have all been found to transform to the orthorhombic modification of the perovskite structure at higher pressures. The ilmenite phase of ZnSiO3, on the other hand, transforms to its component oxide mixture with the rocksalt and rutile structures, whereas ZnGeO3 (ilmenite) transforms first to an as yet undetermined orthorhombic phase and then to its component oxide mixture. The direct transformation from the ilmenite to perovskite structures observed in the metasilicates and metagermanates is consistent with all other reported high-pressure post-ilmenite phases (CdTiO3, CdSnO3, MnVO3, and (Fe,Mg)TiO3). The observation of the ilmenite-perovskite transformation in MgSiO3 and its solid solutions towards Al2O3 suggests that MgO (rocksalt) + SiO2 (rutile) + Al2O3 (corundum) is not a stable mineral assemblage for the earth's lower mantle.  相似文献   

17.
The objective of this study is to demonstrate the relationships among devitrification, vapor phase alteration, localization of gas emanations into fumarolic pipes, and initial deformation of the ash flow sheet during cooling and lithification. Utilizing a unique and temporary exposure of the Tshirege Member of the Bandelier Tuff near Los Alamos, New Mexico, we identify several zones of distinctly preserved fossil fumarolic activity. The fumarolic zones vary in width from a few centimeters to more than a meter. Almost ubiquitously, these zones demonstrate fines-depletion, induration of the margins, upward-flaring geometries, and intense fracturing of overlying geologic units. The fumaroles were preferentially located on post welding, early formed cooling joints that vented to the surface after the vapor phase alteration stage. The pipes were regularly spaced at distances of approximately 4.5?m (N–S) to 7?m (E–W). In turn the pipes were covered by a surge deposit and overlying tuff which rapidly lithified. The overlying tuff was then brecciated during continued fumarolic pipe emissions. Geochemical evaluations confirm the presence of high-temperature mineral (scapolite) indicative of transport of hot volcanic gases through these zones. The pipe centers and walls are depleted in SiO2, and enriched in Al2O3 and FeO. The overlying tuff breccia zones are enriched in Al2O3, FeO and MgO, and depleted in SiO2, NaO, and K2O. From comparison to other ignimbrite cooling histories, the fissures, fumaroles, and structures observed all likely formed in the first few decades after the deposition of the upper Tshirege subunits. This may have significant implications as to timing of initial cooling fractures and subsequent consolidation of gas emission pathways.  相似文献   

18.
FAMOUS basalt 527-1-1 (a high-Mg oceanic pillow basalt) has three generations of spinel which can be distinguished petrographically and chemically. The first generation (Group I) have reaction coronas and are high in Al2O3. The second generation (Group II) have no reaction coronas and are high in Cr2O3 and the third generation (Group III) are small, late-stage spinels with intermediate Al2O3 and Cr2O3. Experimental synthesis of spinels from fused rock powder of this basalt was carried out at temperatures of 1175–1270°C and oxygen fugacities of 10?5.5 to 10?10 atm at 1 atm pressure. Spinel is the liquidus phase at oxygen fugacities of 10?8.5 atm and higher but it does not crystallize at any temperature at oxygen fugacities less than 10?9.5. The composition of our spinels synthesized at 1230–1250°C and 10?9 atmfO2 are most similar to the high-Cr spinels (Group II) found in the rock. Spinels synthesized at 1200°C and 10?8.5 atmO2 are chemically similar to the Group III spinels in 527-1-1. We did not synthesize spinel at any temperature or oxygen fugacity that are similar to the high-Al (Group I) spinel found in 527-1-1. These results indicate that the high-Cr (Group II) spinel is the liquidus phase in 527-1-1 at low pressure and Group III spinel crystallize below the liquidus (~1200°C) after eruption of the basalt on the sea floor. The high-Al spinel (Group I) could have crystallized at high pressure or from a magma enriched in Al and perhaps Mg compared to 527-1-1.  相似文献   

19.
High‐grade mylonites occur in the Takahama metamorphic rocks, a member of the high‐pressure low‐temperature type Nagasaki Metamorphic Rocks, western Kyushu, Japan. Mafic layers within the mylonites retain reaction microstructures consisting of margarite aggregates armoring both corundum and kyanite. The following retrograde reaction well accounts for the microstructures in the CaO–Al2O3–SiO2–H2O system: 3Al2O3 + 2Al2SiO5 + 2Ca2Al3Si3O12(OH) + 3H2O = 2Ca2Al8Si4O20(OH)4 (corundum + kyanite + clinozoisite + fluid = margarite). Mass balance analyses and chemical potential modeling reveal that the chemical potential gradients present between kyanite and corundum have likely driven the transport of the CaO and SiO2 components. The mylonitization is considered to take place chronologically after peak metamorphism and before the above reaction, based on the following features: approximately constant thickness of the margarite aggregates, random orientation of margarite, and local modification of garnet composition at a boudin neck that formed during mylonitization. The estimated peak temperature of 640°C and the pressure–temperature conditions of the above reaction indicate that the mylonitization took place at temperature between 530 and 640°C at pressures higher than 1.2 GPa, approximately equivalent to the depth of the lower crust of island arcs.  相似文献   

20.
In order to identify the distribution of aluminium (Al) within an acid hillslope and its release to a stream, the spatial distribution of acid ammonium oxalate extractable Al (Alo) and exchangeable Al3+ have been investigated on a podzolized hillslope in Bicknoller Combe, Somerset, UK. The eluviated Al from topsoils is mainly deposited in the lower soil horizons forming podzolic B horizons, but some Al flows downslope carried by lateral throughflow. Al oxides may provide the main source of exchangeable Al3+ on the study slope due to high soil acidity. Examination of the spatial distribution of exchangeable Al3+ suggests that the slope hollow, where active convergent throughflow occurs, and the saturation wedge at the base of the slope are the main delivery routes of dissolved Al3+ to the stream. Divalent base cations (Ca2+ and Mg2+), supplied from atmospheric input and organic decomposition and carried by throughflow, exchange Al3+ via cation exchange reactions under high water content. Laterally illuviated Al oxides in the lower hollow adjacent to the saturation wedge probably provide a pool for continuous delivery of Al either as soluble or complexed forms to the stream via the saturated wedge. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号