首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their phytoremediation potential for arsenic (As) contaminated water under laboratory‐controlled conditions. The genotypes were grown in a hydroponic chamber for 20 days in 250‐mL beakers containing As‐contaminated water. During plant development, changes in plant growth, biomass, and total As were evaluated. Of the 10 genotypes (Pusa Agrani, BTO, Pusa Kranti, Pusa Bahar, Pusa Bold, Pusa Basant, Pusa Jai Kisan, Arka Vardhan, Varuna, and Vaibhav) Pusa Jai Kisan was the most effective in phytoremediating As‐contaminated water under hydroponic conditions. This will provide new information for Indian mustard genotypes for phytoremediating As‐contaminated soils.  相似文献   

2.
Continental inputs of copper via rivers and sewage into the Vigo Ria were evaluated. The main fluvial input is not contaminated and the most degraded discharges occur on the southern margin of the middle ria. Continental inputs of copper and ligands to the ria are dominated by sewage treatment plants (136 mol Cu day(-1), 124 mol L day(-1)) supported by rivers (15 mol Cu day(-1), 21 mol L day(-1)). The dissolved fraction is the main channel of discharge for rivers (66%) with particulate matter being predominant in sewage (63%). Dissolved copper is organically complexed both in rivers (99.8%) and sewage (99.9%). This minor difference may be attributed to the fact that the stability of sewage complexes is greater than those in rivers. Moreover, ligand concentrations are higher in sewage than in rivers. Thus, the natural continental inputs of copper and ligands into the ria are magnified by anthropogenic inputs (5-15 and 3-5 times higher for copper and ligands, respectively).  相似文献   

3.
Sb, As, Cu, and Zn toxicity and contamination have become a growing concern in recent years. Phytoremediation, a plant based and cost effective technology, may be an effective approach in the cleanup of water contaminated by these metals. In this study, the aquatic macrophyte Eleocharis acicularis was used in laboratory and field experiments to assess its capability to accumulate Sb, As, Cu, and Zn, and thereby investigate its potential application in phytoremediation. The results showed that E. acicularis adapted well to water contaminated by these metals. The removal rates of Sb, As, Cu, and Zn in the laboratory experiment were 3.04, 2.75, 0.417, and 1.49 μg/L/day, respectively. The highest concentrations of these metals accumulated in E. acicularis after 10 days of the laboratory experiment were 6.29, 6.44, 20.5, and 73.5 mg/kg dry weight, respectively. Only 8% of As, 12% of Sb, 87% of Cu and 93% of Zn removed from the water were used by E. acicularis. The highest concentrations of Sb, As, Cu, and Zn accumulated in E. acicularis after 10 wk of the field experiment were 76.0, 22.4, 33.9, and 266 mg/kg dry weight, respectively. The results indicate that E. acicularis has the ability to accumulate Sb, As, Cu, and Zn from contaminated water.  相似文献   

4.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This study analysed the occurrence of genotypic shifts in laboratory populations of Hediste diversicolor (Polychaeta: Nereididae) exposed to copper stress. Specimens of H. diversicolor were collected at three sites, up to 10 km apart, in the estuarine area of the Pialassa lagoons (North Adriatic Sea, Italy) and were used in acute toxicity tests. Specimens were assigned to copper exposure (0.34 mg/l Cu2+) or control conditions. Each combination of Treatment and Site was replicated in two tanks containing 35 specimens of H. diversicolor. The genotypic structure of both dead and survived specimens was analysed by allozyme electrophoresis at six loci (ALD, FH, HBDH LDH, PGI, SDH). Under copper exposure, specimens with the genotypes ALD100/100 and PGI102/102 had significantly lower mortalities than other genotypes Results were consistent across the three sites, suggesting that, under laboratory conditions, effects of copper stress on H. diversicolor is related to individual genotypes at ALD and PGI loci.  相似文献   

6.
The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed.  相似文献   

7.
An experimental investigation is conducted to explore the suitability of Lolium perenne L., diatomite, chalcedonite, dolomite, and limestone for the phytostabilization of Ni and Cu in contaminated soil. A controlled greenhouse study is conducted. The soil is enriched with rising dose of Cu and Ni, that is, (0, 150, 250, and 350 mg kg?1) and (0, 150, 300, and 450 mg kg?1), respectively. The phytostabilization potential of perennial ryegrass is evaluated using a bioaccumulation coefficient and translocation factor. Pseudo‐total and available metal content (0.01 M CaCl2) in soils and bioaccumulated content in plants are defined in laboratory experiments using spectrophotometry experimental technique. L. perenne is adequate in phytostabilization aided programs, simultaneously, diatomite, chalcedonite, dolomite, and limestone used as modifiers are effective in reducing the accessibility and mobility of metals in Cu‐ and Ni‐polluted soils. The finding of the present study suggests that the studied element in the roots and above‐ground parts of L. perenne differs significantly upon applying mineral‐based modifications to the soil, synchronously the effect of increasing Cu and Ni levels. Application of dolomite and limestone to the soil cause the highest percentage of the above‐ground biomass. Diatomite along with limestone cause a significant boost of Cu and Ni absorption in the roots. Limestone causes an increase in the contents of K, Na, and Ca, as well as a reduction in P in the above‐ground parts of L. perenne. Limestone and chalcedonite leads to the highest decrease in available Cu and Ni.  相似文献   

8.
The intertidal copeopod Tigriopus japonicus, which is abundant and widely distributed along the coasts of Western Pacific, has been suggested to be a good marine ecotoxicity testing organism. In this study, a series of experiments were conducted to investigate the reproducibility and variability of copper (Cu) sensitivity of T. japonicus so as to evaluate its potential to serve as an appropriate test species. To understand the seasonal variation of Cu sensitivity, individuals of T. japonicus were collected from the field in summer and winter, and subjected to standard 96 h acute (static renewal) toxicity tests. 96 h-LC50 values of T. japonicus collected from the two seasons were marginally different (p = 0.05), with an overall coefficient of variation (CV) of 33%. Most importantly, our results indicated that chronic Cu sensitivity of T. japonicus was highly reproducible. The CVs of intrinsic rates of increase in the population of the control and Cu treatment (10 μg Cu l−1) groups were only 10–11% between 10 runs of a standardised complete life-cycle test. Moreover, different Cu(II) salts generally resulted in a similar 96 h-LC50 value while Cu(I) chloride was consistently slightly less toxic than Cu(II) salts. Given such a high reproducibility of toxic responses, it is advocated to use T. japonicus as a routine testing organism.  相似文献   

9.
《国际泥沙研究》2020,35(5):516-526
Heavy metal (HM) pollution in sediment is a serious concern particularly in developing nations, warranting an extensive survey to understand the current situation and propose possible remedial measures. This paper compiles the data of HMs cadmium (Cd), iron (Fe), cobalt (Co), manganese (Mn), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), zinc (Zn) and nickel (Ni) in aquatic sediment from India from 1979 to 2017. It was found that mean values of Cu, Co, Zn, Pb, As, and Cr in Indian sediment were high in comparison to the Australian Interim Sediment Quality Guidelines, World Surface Rock Average, and the Threshold Effect Level for freshwater ecosystems. Anthropogenic activities, lithogenic factors, and sand intrusion are the main factors associated with HM pollution as observed using cluster analysis and principal component analysis. The results of contamination indices indicate that HM contamination ranged from average to high, in the sediment. The ecological risk assessment results showed that 11% HMs present very high risk. The cancer risk, due to the high contents of Cd, As, and Cr the ingestion pathway, showed high risk of cancer through food/water contaminated with sediment. At source reduction of HMs in industrial effluents by effluent treatment plants, and plantation of phytoremediating rooted macrophytes in sediment may help in HM mitigation of the sediment.  相似文献   

10.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

11.
Heavy metal polluted sites are bearing an acute hazardous risk for the groundwater, but also a potential one. While the acute risk can be assessed directly via seepage water measurements, determination of the potential risk is much more complex. It results from the sum of all reactions that are capable to mobilize heavy metals under worst case environ-mental conditions. Using a fourfold sequential extraction (SE4) such a worst case was simulated for four soils highly contaminated with Pb, Zn, and Cu. The resulting potential mobilizable amounts ϕpm have been compared with those derived from 6 single extractions. By means of variance analyses, it is shown that ϕpm of lead can be represented by a single extraction with NH2OH. In contrary, ϕpm of zinc can be represented using the pHstat test or an extraction with aqua regia, while ϕpm of copper can be represented only by aqua regia extraction. The water-soluble amounts deriving from the DEV-S4 test do not correlate with the potential mobilizable amounts of any metal. Therefore, an assessment of contaminated sites should include an aqua regia extraction additionally to the seepage water analysis.  相似文献   

12.
Burrowing behaviour is adaptive and allows clams to escape predation; yet the effects of potentially toxic metals on such behaviour have not been adequately investigated. In natural marine sediment contaminated with copper the time for littleneck clams (Protothaca staminea) to achieve complete burial was recorded. Above a threshold of 5.8 μg g−1 Cu added to dry sediment, the time for 50% of the clams to burrow (ET50) increased logarithmically with increasing sediment copper concentration according to:
logET50 = 0.15 (CU) - 1.37 (n = 4, r2 = 0.98)
where ET50=time in hours for 50% of clams to burrow and Cu=μg g−1 Cu in dry sediment. Previously exposed clams had both a lower threshold to Cu and a longer reburrowing time (ET50). Clams exposed to sediment mixed with Chelex-100®-sorbed copper showed no significant change in burrowing time. Bioassays based on claim burrowing behaviour can measure both bioeffectiveness of sediment-sorbed metals and a sublethal effect with ecological meaning.  相似文献   

13.
A greenhouse pot experiment was conducted to investigate the effect of compost addition on the phytoremediation ability of Medicago sativa, Brassica napus, and Lolium perenne in soils contaminated with pyrene. Pyrene concentrations were evaluated after 90 days in contaminated uncultivated amended‐soil, cultivated amended‐soils, and shoots and roots of the three plant species. The addition of compost enhances significantly pyrene dissipation from 16 to 26% in uncultivated soil, whereas in cultivated soils it appears not to have any significant effect on pyrene dissipation, neither pyrene was detectable in shoots and roots of the three species examined. The high partition coefficient of pyrene to compost dissolved organic matter (DOM) and the molar absorptivity values at 280 nm (ε280) indicate a high affinity of pyrene to compost DOM molecules, likely due to their aromatic character. These results suggest that compost improves pyrene removal from soil, possibly by promoting its adsorption onto compost DOM. This property is very important in indicating that compost can be used, besides for its amendment capacity, also as a potential tool for remediation of contaminated soils.  相似文献   

14.
Three experiments were conducted with Atlantic salmon (Salmo salar) to assess the effects of dietary exposure to copper and cadmium. The results presented here provide an overview, details of each experiment will be published in full elsewhere. In the first experiment, salmon parr exposed for four weeks to 35 and 700 mg Cu kg−1 diet had significantly elevated intestinal copper concentrations, cell proliferation (PCNA) and apoptosis rates compared to control fish. No differences were observed in gill or plasma copper concentrations among the groups. In contrast to the controls, the Cu exposed groups did not grow significantly during the exposure period. The second experiment (three months exposure) was conducted to assess the effects of dietary copper (control, 35, 500, 700, 900 or 1750 mg Cu kg−1 diet) on growth and feed utilization in salmon fingerlings. Growth was significantly reduced after three months exposure to dietary Cu concentrations above 500 mg kg−1. Similarly, copper body burdens were significantly higher in fish exposed to elevated dietary copper concentrations (above 35 mg Cu kg−1 diet). In the third experiment, salmon parr were exposed to one of six dietary cadmium concentrations (0, 0.5, 5, 25, 125 or 250 mg Cd kg−1 diet) for four months. Cadmium accumulated in the liver>intestine>gills of exposed fish. Rates of apoptosis and cell proliferation in the intestine increased following exposure to dietary cadmium. Exposure to elevated concentrations of dietary cadmium had no effect on growth in salmon parr. Results from these studies indicate that cellular biomarkers have potential as early warning signs of negative effects on the overall fitness of an organism.  相似文献   

15.
The suitability of using four bivalve molluscs (Sanguinolaria acuminata, Anadara granosa, Meretrix meretrix, and Pelecyora trigona) in biomonitoring of heavy metals (Cu, Pb, Cd, Zn, and Hg) collected from intertidal regions of the Sunderban mangrove wetland, northeastern part of the Bay of Bengal, were evaluated. Both speciesdependent variability and temporal variations were pronounced. A high degree of organ specificity was evident in the bivalves where gill and mantle exhibited higher metal accumulation due to ion exchange property of the mucous layer covering these organs while shells represent very poor accumulation. Elevated values of Zn and Cu reflect high potential for biomagnification through marine food chain. Metal concentrations in different body size groups of the bivalves do not follow uniform trend. Correlation coefficient between different metal couplings as tested statistically revealed significant coupling for Pb–Zn, Pb–Cu, Zn–Cu, and Hg–Cu. Concentrations of all the metals in specific organs (visceral mass, mantle and gill) of the bivalves exceeded the safe levels according to the international standards for metals compiled by Food and Agricultural Organization of the United Nations and would be of great risk for human consumption. It is concluded that the mussel and clam are suitable biomonitors to employ in programs designed to assess changes in metal pollution in the Sunderban mangrove wetland.  相似文献   

16.
The present study evaluated the tolerance and accumulation potential in the salt-marsh shrub Halimione portulacoides under moderate and high external Cu levels. A greenhouse experiment was conducted in order to investigate the effects of a range of external Cu concentrations (0 to 60 mmol l(-1)) on growth and photosynthetic performance by measuring gas exchange, chlorophyll fluorescence parameters and photosynthetic pigments. We also determined total copper, nitrogen, phosphorus and sulfur concentrations in the plant tissues. H. portulacoides survived with external Cu concentrations of up to 35 mmol Cu l(-1), although the excess of metal resulted in a biomass reduction of 48%. The effects of Cu on growth were linked to a drastic reduction in net photosynthesis. However, H. portulacoides tolerated Cu levels of up to 15 mmol Cu l(-1) without suffering adverse physiological effects. Our results indicate that this species could play an important role in the restoration of Cu-contaminated soils.  相似文献   

17.
Phytoremediation, a plant‐based and cost‐effective technology for the cleanup of contaminated soil and water, is receiving increasing attention. In this study, the aquatic macrophyte Eleocharis acicularis was examined for its ability to take up multiple heavy metals and its potential application for phytoremediation at an abandoned mining area in Hokkaido, Japan. Elemental concentrations were measured in samples of E. acicularis, water, and soil collected from areas of mine tailing and drainage. The results reveal that Pb, Fe, Cr, Cu, Ni, and Mn accumulation in the plants increased over the course of the experiment, exceeding their initial concentrations by factors of 930, 430, 60, 25, 10, and 6, respectively. The highest concentrations of Fe, Pb, Zn, Mn, Cr, Cu, and Ni within the plants were 59500, 1120, 964, 388, 265, 235, and 47.4 mg/kg dry wt., respectively, for plants growing in mine drainage after 11 months of the experiment. These results indicate that E. acicularis is a hyperaccumulator of Pb. We also found high Si concentrations in E. acicularis (2.08%). It is likely that heavy metals exist in opal‐A within cells of the plant. The bioconcentration factors (BCF: ratio of metal concentration in the plant shoots to that in the soil) obtained for Cr, Cu, Zn, Ni, Mn, and Pb were 3.27, 1.65, 1.29, 1.26, 1.11, and 0.82, respectively. The existence of heavy metals as sulphides is thought to have restricted the metal‐uptake efficiency of E. acicularis at the mine site. The results of this study indicate that E. acicularis shows great potential in the phytoremediation of mine tailing and drainage rich in heavy metals.  相似文献   

18.
Physiological Responses of Five Seagrass Species to Trace Metals   总被引:5,自引:0,他引:5  
Trace metal run-off associated with urban and industrial development poses potential threats to seagrasses in adjacent coastal ecosystems. Seagrass from the largest urban (Moreton Bay) and industrial (Port Curtis) coastal regions in Queensland, Australia were assessed for metal concentrations of iron (Fe), aluminium (Al), zinc (Zn), chromium (Cr) and copper (Cu). Trace metal concentrations in seagrass (Zostera capricorni) leaf and root-rhizome tissue had the following overall trend: [Fe] > [Al] > [Zn] > [Cr] > [Cu]. Rainfall events and anthropogenic disturbances appeared to influence metal concentrations in seagrasses with the exception of Al, which does not appear to bioaccumulate. In laboratory experiments, five seagrass species (Halophila ovalis, H. spinulosa, Halodule uninervis, Z. capricorni, Cymodocea serrulata) were incubated with iron (1 mg Fe l−1) and copper (1 mg Cu l−1) and responses assessed by changes in PSII photochemical efficiency (Fv/Fm), free amino acid content and leaf/root-rhizome metal accumulation. Iron addition experiments only affected Halophila spp, while copper additions affected other seagrass species as well. Trace metal contamination of seagrasses could have ramifications for associated trophic assemblages through metal transfer and seagrass loss. The use of photosystem II photochemical efficiency as well as amino acid concentrations and composition proved to be useful sublethal indicators of trace metal toxicity in seagrasses.  相似文献   

19.
Pot experiments were conducted in glasshouse under controlled conditions. The effect of copper in alluvial soil on the growth and yield of Triticum aestivum L. (wheat) was worked out. Copper was applied in soil at 5–100 mg L?1, along with iron supplement. Inhibitory response of copper was significant (p < 0.05) confirmed by the plant growth parameters viz., plant height, fresh and dry weight, moisture content, pigment contents, protein, sugar contents followed by increased catalase and peroxidase activity in the harvest at 30, 60, and 90 days, of treatment, respectively. The plants grown on copper treated soil along with 5 mg L?1 Cu and iron application showed significant effects (p < 0.05) regarding the increase in plant biomass, plant height (shoot only), pigment contents, protein, sugar contents, grain yield followed by decreased catalase and peroxidase activity in wheat after 30, 60, and 90 days of treatment, respectively. The accumulation of metal in plant tissues was found in order of Fe > Cu coupled by less translocation in grain as compared to the whole plant.  相似文献   

20.
Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. For this reason, many methods for AMD treatment are developed, being wetlands a good option for metal elements removal from these mining effluents. The efficiency of Peruvian native plants such as Schoenoplectus californicus (S. californicus) to remove metal elements in effluents through artificial wetlands is studied. Batch removal tests are carried out with different effluents containing copper, zinc, lead, and iron. For iron-metal binary effluents, copper, zinc, and lead are removed by 82%, 75%, and 88%; while in the effluent containing all metals, the removal rate is 90% and 92% for copper and lead, respectively. According to the preliminary results, it is concluded that iron interferes more in the removal of zinc and lead than in copper from binary effluents. The use of S. californicus turns out to be an efficient, attractive, and economical alternative for the treatment of effluents contaminated with copper, zinc, lead, and iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号