首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Canada׳s Department of Fisheries and Oceans (DFO) conducts annual surveys in the Labrador Sea along the repeat hydrography line AR7W. The occupation of the AR7W line in May 2013 was followed by the experiment aimed at resolving the imprint of melting drifting icebergs on the upper layer thermohaline characteristics in the Labrador Sea. We present high-resolution observations around two icebergs conducted with the towed undulating platform Moving Vessel Profiler (MVP). The first iceberg drifted in relatively warm water of Atlantic origin (~2.5–3.1 °C) off Greenland, while the second iceberg was on the Labrador shelf in cold water below 0 °C. Both icebergs had a lengthscale of O(100 m). In both cases surface buoyant plumes fed by melt water and attached to the iceberg were observed. The plumes were evident in the anomalous thermohaline characteristics of the seawater. Their density anomalies were sufficiently strong to produce visible frontal structures, which imply a development of the intrinsic dynamics associated with a plume. The first plume formed over a time interval of ~10 h, while the second plume formed over several days and extended for more than 1 km (tenfold the iceberg׳s size). Strong vertical displacements of the pycnocline were observed near the second iceberg. They are interpreted as the internal wave wake. This interpretation is based on the temporal scale of these oscillations (local buoyancy frequency), as well as on the spatial orientation of these waves with respect to the iceberg drift relative to the pycnocline. The observed internal waves partially overlapped with the plume and affected its structure. The saline seawater splashing by swell contributed to the surface melting of the icebergs. Scaling analysis of the second plume suggests that it could be in the “rotational” dynamic regime with recirculating anticyclonic flow.  相似文献   

2.
The water mass structure and circulation of the continental shelf waters west of the Antarctic Peninsula are described from hydrographic observations made in March–May 1993. The observations cover an area that extends 900 km alongshore and 200 km offshore and represent the most extensive hydrographic data set currently available for this region. Waters above 100–150 m are composed of Antarctic Surface Water and its end member Winter Water. Below the permanent pycnocline is a modified version of Circumpolar Deep Water, which is a cooled and freshened version of Upper Circumpolar Deep Water. The distinctive signature of cold and salty water from the Bransfield Strait is found at some inshore locations, but there is little indication of significant exchange between Bransfield Strait and the west Antarctic Peninsula shelf. Dynamic topography at 200 m relative to 400 m indicates that the baroclinic circulation on the shelf is composed of a large, weak, cyclonic gyre, with sub-gyres at the northeastern and southwestern ends of the shelf. The total transport of the shelf gyre is 0.15 Sv, with geostrophic currents of order 0.01 m s-1. A simple model that balances across-shelf diffusion of heat and salt from offshore Upper Circumpolar Deep Water with vertical diffusion of heat and salt across the permanent pycnocline into Winter Water is used to explain the formation of the modified Circumpolar Deep Water that is found on the shelf. Model results show that the observed thermohaline distributions across the shelf can be maintained with a coefficient of vertical diffusion of 10-4 m2 s-1 and horizontal diffusion coefficients for heat and salt of 200 and 1200 m2 s-1, respectively. When the effects of double diffusion are included in the model, the required horizontal diffusion coefficients for heat and salt are 200 and 400 m2 s-1, respectively.  相似文献   

3.
A high resolution modeling study is undertaken, with a 2.5-dimensional nonhydrostatic model, of the generation of internal waves induced by tidal motion over the ridges in Luzon Strait. The model is forced by the barotropic tidal components K1, M2, and O1. These tidal components, along with the initial density field, were extracted from data and models. As the barotropic tide moves over the Luzon Strait sills, there is a conversion of barotropic tidal energy into baroclinic tidal energy. Depressions are generated that propagate towards the Asian Seas International Acoustics Experiment (ASIAEX) test site on the Chinese continental shelf. Nonlinear effects steepen the depressions, frequency and amplitude dispersion set in, and disintegration into large amplitude solitary waves occurs. The effects of varying the initial density field, tidal component magnitudes, as well as adding a steady background current to represent the occasional excursions of the Kuroshio Current into the strait, are considered.Depressions are generated at each of the two sills in Luzon Strait which radiate away, steepening and evolving into internal solitary wave trains. Baroclinic fluxes of available potential energy, kinetic energy and linear are calculated for various parameter combinations. The solitary wave trains produced in the simulations generally consist of large amplitude wave trains alternating with small amplitude wave trains. During strong tidal flow, Kelvin–Helmholtz type instabilities can develop over the taller double-humped sill. The solitary waves propagating towards the ASIAEX test site have been observed to reach amplitudes of 120–250 m, depending on the tidal strength. ASIAEX observations indicate amplitudes up to 150 m and the Windy Island Experiment (WISE) measurements contain magnitudes over 200 m. The model results yield solitary wave amplitudes of 70–300 m and half widths of 0.60–3.25 km, depending on parameter values. These are in the range of observations. Measurements by Klymak et al. (2006), in the South China Sea, exhibit amplitudes of 170 m, half widths of 3 km and phase speeds of 2.9 m s?1. Model predictions indicate that the solitary waves making up the wave packet each experience different background currents with strong near surface shear.The energy in the leading soliton of the large amplitude wave trains ranges between 1.8 and 9.0 GJ m?1. The smaller value, produced using barotropic tidal currents based on the Oregon State University data base, is the same as the energy estimated to be in a solitary wave observed by Klymak et al. (2006). Estimates of the conversion of barotropic tidal energy into radiating internal wave energy yield conversion rates ranging between 3.6% and 8.3%.  相似文献   

4.
Primary production measurements were carried out during the five ECOFER cruises, in order to estimate the autochtonous contribution to particulate fluxes collected at two mooring sites, in the Cap-Ferret Canyon, from June 1989 to August 1991. Primary production rates are reported in relation to levels of chlorophyll and nitrogenous nutrients in the euphotic zone. Except in early spring, the water column remains stratified until the beginning of autumn surface-water cooling. During the stratified period, maximal chlorophyll concentrations were recorded at the bottom of the photic zone, near the 1% light depth, close to the nitracline; concentrations in some profiles were greater than those measured in surface waters during the early spring bloom. From June to October, a mean daily production of 0.4 g C m−2 may be used to estimate particulate fluxes, because the recorded variability was low. During April and May, mean daily production rates can be about 3–4 times higher. Extrapolation of our data gives an estimate of yearly production from 145 to 170 g C m−2 yr−1. The possibility of greater production rates, under stratified conditions, is discussed taking into account the occurrence of changes in the depth of the chlorophyll maximum during the day; such vertical movements could be caused by internal waves, particularly at the shelf break.  相似文献   

5.
Under present-day conditions, rivers are the main source of fine sediments dispersed to the Bay of Biscay. They deliver about 2.5×106 t yr−1 of continental fine sediments, 60% of which is derived from the Gironde estuary. Of this flux, 65% is believed stored on the shelf. Two kinds of mud fields can be found in the Bay of Biscay: coastal mud and shelf mud belts. The total mass of fine sediments stored during the past 2000 years is 3.2×109 t. Consequently, about 0.9×106 t yr−1 could reach the shelf edge and eventually the open sea. From this amount of displaced material and the deposition surface areas, an evaluation of sediment fluxes across the margin during the late Holocene period is discussed. This evaluation is compared with results obtained from ECOsystéme du canyon du cap-FERret (ECOFER) data from sediment traps and surficial box cores.  相似文献   

6.
CTD and ADCP measurements together with a sequence of satellite images indicate pronounced current meandering and eddy activity in the western Black Sea during April 1993. The Rim Current is identified as a well-defined meandering jet stream confined over the steepest topographic slope and associated cyclonic–anticyclonic eddy pairs located on both its sides. It has a form of highly energetic and unstable flow system, which, as it propagates cyclonically along the periphery of the basin, is modified in character. It possesses a two-layer vertical structure with uniform upper layer speed in excess of 50 cm/s (maximum value ∼100 cm/s), followed by a relatively sharp change across the pycnocline (between 100 and 200 m) and the uniform sub-pycnocline currents of 20 cm/s (maximum value ∼40 cm/s) observed up to the depth of ∼350 dbar, being the approximate limit of ADCP measurements. The cross-stream velocity structure exhibits a narrow core region (∼30 km), flanked by a narrow zone of anticyclonic shear on its coastal side and a broader region of cyclonic shear on its offshore side. The northwestern shelf circulation is generally decoupled from the influence of the basinwide circulation and is characterized by much weaker currents, less than 10 cm/s. The southward coastal flow associated with the Danube and Dinepr Rivers is weak during the measurement period and is restricted to a very narrow coastal zone.The data suggest the presence of temperature-induced overturning prior to the measurements, and subsequent formation of the Cold Intermediate Water mass (CIW) within the Northwestern Shelf (NWS) and interior of the western basin. The newly formed shelf CIW is transported in part along the shelf by the coastal current system, and in part it flows downslope across the shelf and intrudes into the Rim Current convergence zone. A major part of the cold water mass, however, seems to be trapped within the northwestern shelf. The CIW mass, injected into the Rim Current zone from the shelf and the interior region, is then circulated around the basin.  相似文献   

7.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

8.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

9.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

10.
Sulfate reduction rate measurements by the 35SO42− core injection method were carried out in situ with a benthic lander, LUISE, and in parallel by shipboard incubations in sediments of the Black Sea. Eight stations were studied along a transect from the Romanian shelf to the deep western anoxic basin. The highest rates measured on an areal basis for the upper 0–15 cm were 1.97 mmol m−2 d−1 on the shelf and 1.54 mmol m−2 d−1 at 181 m water depth just below the chemocline. At all stations sulfate reduction rates decreased to values <3 nmol cm−3 d−1 below 15 cm depth in the sediment. The importance of sulfate reduction relative to the total mineralization of organic matter was very low, 6%, on the inner shelf, which was paved with mussels, and increased to 47% on the outer shelf at 100 m depth. Where the oxic–anoxic interface of the water column impinged on the sea floor at around 150 m depth, the contribution of sulfate reduction increased from >50% just above the chemocline to 100% just below. In the deep sea, mean sulfate reduction rates were 0.6 mmol m−2 d−1 corresponding to an organic carbon oxidation of 1.3 mmol m−2 d−1. This is close to the mean sedimentation rate of organic carbon over the year in the western basin. A comparison with published data on sulfate reduction in Black Sea sediments showed that the present results tend to be higher in shelf sediments and lower in the deep-sea than most other data. Based on the present water column H2S inventory and the H2S flux out of the sediment, the calculated turnover time of H2S below the chemocline is 2100 years.  相似文献   

11.
The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.  相似文献   

12.
Biochemical and productivity measurements and nutrient enrichment experiments were conducted on three cruises in summer and two cruises in winter on the shelf and the basin of the northern South China Sea (SCS) between 2001 and 2004. Phytoplankton production, in terms of depth-integrated new production (INP) or depth-integrated primary production (IPP), was higher in winter than in summer and on the shelf than in the basin. In winter, with deepening of the mixed layer, nitrate from the shallow nitracline that characterized the SCS waters was made available in the surface and supported the highest production of the year. Averaged INP measured in winter (0.25 g C m−2 d−1) was about twice the summer average (0.12 g C m−2 d−1) and was 0.19 g C m−2 d−1 on the shelf compared with 0.15 g C m−2 d−1 in the basin. In winter, average INP on the shelf was higher than the basin (0.34 versus 0.21 g C m−2 d−1); whereas in summer, averaged INP on the shelf (0.13 g C m−2 d−1) and the basin (0.11 g C m−2 d−1) were similar. While averaged IPP measured in the basin was higher in winter than in summer (0.53 versus 0.35 g C m−2 d−1), IPP on the shelf showed little temporal variation (0.82 in winter versus 0.84 g C m−2 d−1 in summer). Considerable spatial and inter-annual variation in production was measured in the shelf waters during summer, which could be linked to discharge volume and plume flow direction of the Zhujiang River. While the shelf waters in summer were mostly nitrogen starved or nitrogen and phosphorus co-limited, excessive river runoff may cause the nutritive state to shift to phosphorus deficiency. Waters with low surface salinities and high fluorescence from riverine mixing could be found extending from the Zhujiang mouth to as far as offshore southern Taiwan after a typhoon passed the northern SCS and brought heavy rainfall. Overall, both nutrient advection in winter and river discharge from the China coast in summer made new nitrogen available and shaped the dynamics of phytoplankton production in these oligotrophic waters.  相似文献   

13.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

14.
Measurements of dissolved inorganic carbon (DIC), pH, total alkalinity (TA), and partial pressure of CO2 (pCO2) were conducted at a total of 25 stations along four cross shelf transects in the East China Sea (ECS) in January 2008. Results showed that their distributions in the surface water corresponded well to the general circulation pattern in the ECS. Low DIC and pCO2 and high pH were found in the warm and saline Kuroshio Current water flowing northeastward along the shelf break, whereas high DIC and pCO2 and low pH were mainly observed in the cold and less saline China Coastal Current water flowing southward along the coast of Mainland China. Difference between surface water and atmospheric pCO2 (ΔpCO2), ranging from ~ 0 to ? 111 μatm, indicated that the entire ECS shelf acted as a CO2 sink during winter with an average flux of CO2 of ?13.7 ± 5.7 (mmol C m? 2 day? 1), and is consistent with previous studies. However, pCO2 was negatively correlated with temperature for surface waters lower than 20 °C, in contrast to the positive correlation found in the 1990s. Moreover, the wintertime ΔpCO2 in the inner shelf near the Changjiang River estuary has appreciably decreased since the early 1990s, suggesting a decline of CO2 sequestration capacity in this region. However, the actual causes for the observed relationship between these decadal changes and the increased eutrophication over recent decades are worth further study.  相似文献   

15.
We conducted a research cruise in late summer (July–August) 2000 to study the effect of mesoscale circulation features on zooplankton distributions in the coastal upwelling ecosystem of the northern California Current. Our study area was in a region of complex coastline and bottom topography between Newport, Oregon (44.7°N), and Crescent City, California (41.9°N). Winds were generally strong and equatorward for >6 weeks prior to the cruise, resulting in the upwelling of cold, nutrient-rich water along the coast and an alongshore upwelling jet. In the northern part of the study area, the jet followed the bottom topography, creating a broad, retentive area nearshore over a submarine shelf bank (Heceta Bank, 44–44.4°N). In the south, a meander of the jet extended seaward off of Cape Blanco (42.8°N), resulting in the displacement of coastal water and the associated coastal taxa to >100 km off the continental shelf. Zooplankton biomass was high both over the submarine bank and offshore in the meander of the upwelling jet. We used velocities and standing stocks of plankton in the upper 100 m to estimate that 1×106 m3 of water, containing an average zooplankton biomass of ~20 mg carbon m?3, was transported seaward across the 2000-m isobath in the meandering jet each second. That flux equated to offshore transport of >900 metric tons of carbon each day, and 4–5×104 tons over the 6–8 week lifetime of the circulation feature. Thus, mesoscale circulation can create disparate regions in which zooplankton populations are retained over the shelf and biomass can accumulate or, alternatively, in which high biomass is advected offshore to the oligotrophic deep sea.  相似文献   

16.
The mesoscale dynamics of the Scottish side of the Faroe–Shetland Channel have been investigated using synoptic in situ and remote sensing observations. A cold core cyclonic eddy, identified from an AVHRR image, had a diameter of about 50 km and surface current speeds of up to 50 cm s-1; it appeared to be attached to the 800 m isobath as it moved north-eastward along the edge of the channel at about 8 cm s-1. Speeds in the slope current were about 50 cm s-1 but increased to 70 cm s-1 where the current was compressed by the eddy. Offshore, over the 1000 m isobath in the cooler water, speeds in the current were slower (ca. 20 cm s-1). North-west of the Shetlands the offshore edge of the slope current was deflected across the channel for a distance of about 70 km from the shelf edge. The speed of drifters in the slope current increased to over 60 cm s-1 as they moved anti-cyclonically around this deflection. CTD profiles suggest that the movement of the surface waters was mirrored in the deep water of the channel. The deflection carried a very large quantity of North Atlantic Water into the central part of the channel; its cause and ultimate fate are not known, although it is likely to have had a significant impact on the dynamics of the channel.  相似文献   

17.
Hydrocarbon and brine seeps in the deep regions of the northern and western Gulf of Mexico often support populations of the bathymodiolin mussel, “Bathymodioluschildressi. In this study, we use two mitochondrial and six nuclear DNA markers to investigate relationships within the metapopulation of “B.childressi in the Gulf of Mexico from Mississippi Canyon to Alaminos Canyon over a range of 527–2222 m in depth and approximately 550 km in distance. Restriction fragment length polymorphism (RFLP) and size polymorphism analysis of the markers suggest that populations are not genetically differentiated. FST values were not significantly different from zero. The presence of a panmictic population of “B.childressi over such a broad range of depth suggests that this species may be quite different from most members of the Gulf of Mexico seep chemosynthetic communities.  相似文献   

18.
The tsunami of 26 December 2004 was the largest ever recorded in the Indian Ocean, triggered by the 3rd largest earthquake in 100 years measuring 9.2 moment magnitude. The epicenter of the earthquake was off Banda Aceh on the Indian Ocean coast of the island of Sumatra in Indonesia, centered at 3.316°N, 95.854°E. A sudden upward movement of the seafloor that averaged ∼6 m occurred along almost 1300 km of the north-east Indian Ocean plate at 0059 Coordinated Universal Time (UTC) and lasted 8 min. Because of the lack of preparedness and absence of warning systems in the Indian Ocean the tsunami spread silently across the ocean over a span of 8 h causing massive destruction including the deaths of over 250,000 people, with maximum damages occurring in Indonesia, Thailand, Sri Lanka, India and the Maldives. Moderate to low damages were recorded in the Seychelles, Socotra (Yemen) and Somalia, though in the latter a highly vulnerable town was impacted resulting in over 300 deaths. Most of eastern Africa was spared massive damages from the waves due to (a) distance from the epicenter (>6000 km), (b) the dissipation of energy of the tsunami by shallow banks in the middle of the Indian Ocean (the Seychelles banks, Saya de Malha and Cargados Carajos Shoals) and (c) at least for Kenya and Tanzania, the first and largest waves hit at low tide. In Kenya and Tanzania these factors resulted in the waves being experienced as tidal surges of 1–1.5 m amplitude lasting 5–10 min. Damages recorded for eastern Africa include 11 deaths in Tanzania and 1 in Kenya, of people walking and swimming over shallow intertidal flats being trapped by the advancing and receding tidal surges, damage to boats anchored in shallow water and inundation in Mauritius and Rodrigues. Official information, warning and response networks were nonexistent, and even when an official response was generated in Kenya the public demonstrated no faith or willingness to act on warnings from officials such as the police. Importantly, information on the tsunami and the generation of an official response was dependent on two technologies, satellite television and mobile telephony, and these should be built into future warning systems as key mechanisms and backups to official information and warning networks.  相似文献   

19.
《Marine Geology》2001,172(3-4):331-358
Analyses of over 6600 km of reflection seismic profiles on the northern continental margin of the South China Sea permit the recognition of four Quaternary high-frequency type 1 sequences of the 4th order, deposited during the past ca. 690 kyr. At the present-day shelf edge, only lowstand systems tracts characterised by a prograding clinoformal internal reflection pattern are preserved. The prograding complexes can be considered as regressive units accumulated during relative sea-level falls. They exhibit internal discontinuities which might point to minor sea-level fluctuations of the 5th order. A preliminary regional relative sea-level curve for the past 630 kyr is established using the present positions of the delta fronts mapped. The neotectonics curve derived by subtracting eustatic sea-level changes from the relative sea-level curve shows that the depths of the delta fronts today are controlled primarily by regional tectonic movements and the global sea-level.Our seismo-stratigraphic interpretation documents that the area off Hong Kong and around the Dongsha Islands experienced two uplift episodes during the past 5 ma, namely at the Miocene/Pliocene boundary and at the end of the lower Middle Pleistocene, respectively. These uplift events which are centred on the Dongsha Rise led to its subaerial exposure and to the erosion of the Pliocene and most of the Pleistocene strata. The change from thermal subsidence of the continental margin initiated at the end of the drift phase to the phase of magmato-tectonic uplift was caused by a reorientation of the tectonic regime.The Recent depositional environment on the northern continental margin of the South China Sea is dominated by sediment accumulation within the inner shelf and the Zhujiang (Pearl River) estuary. The outer shelf and upper slope, especially around the Dongsha Islands, are characterised by bypass of terrigenous material.The sedimentary column in the deepsea basin has a thickness of more than 2 km and comprises 14 depositional units starting with terrestrial rift deposits. It overlies oceanic as well as transitional crust.  相似文献   

20.
An intra-annual investigation of the fugacity of CO2 (fCO2) has been conducted in surface waters of the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula) in four cruises made in 2006 and 2007. Intra-annual variability of fCO2 was assessed and is discussed in terms of mixing, temperature and biology. In the study area of the shelf, thermodynamic control over fCO2 predominates from early May to late November, and this is opposite and similar in magnitude to the net biological effect. However, biological control over fCO2 predominates during winter. The results suggest that surface waters in the coastal area are under-saturated with respect to atmospheric CO2 during most of the year; therefore they represent a sink for atmospheric CO2 between November and May (? 1.0 mmol m? 2 day? 1), but a weak source in June (1.3 mmol m? 2 day? 1). In contrast, the coastal ecosystems studied (the lower estuary of Guadalquivir Estuary and Bay of Cádiz) acted as a weak sink for atmospheric CO2 during February (? 1.3 mmol m? 2 day? 1) and as a source between May and November (2.6 mmol m? 2 day? 1). The resulting mean annual CO2 flux in the north-eastern shelf of the Gulf of Cádiz was ? 0.07 mol m? 2 year? 1 (? 0.2 mmol m? 2 day? 1), indicating that the area acts as a net sink on an annual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号