首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m−2 d−1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m−2 d−1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (∼44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator–prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus, which suggests that the benthic biota may be more sensitive to changes in labile detritus inputs than when assessed from diet composition alone. Species-specific responses to different types of labile detritus inputs, e.g. pelagic algae versus sympagic algae, however, are presently unknown and are needed to assess the vulnerability of individual components of the benthic food web.  相似文献   

2.
Activities of dissolved and particulate234Th were measured to study the spatial variation of scavenging phenomena in the surface water of the Bashi Channel and the Luzon Strait. Using an irreversible scavenging model, the residence times for total, dissolved, and particulate234Th are 28–613, 8–156, and 7–306 days, respectively. Along the PR21 transect of the WOCE project, three major domains can be identified based on the hydrography and the234Th data: the Bashi Channel, the Northern Luzon Strait, and the Southern Luzon Strait. Tight correlation between the scavenging constant and the suspended particle matter (TSM) concentration in the surface water of the Northern Luzon Strait implies that TSM concentration is an important parameter in studying thorium scavenging.  相似文献   

3.
The Fram Strait is very important with regard to heat and mass exchange in the Arctic Ocean, and the large quantities of heat carried north by the West Spitsbergen Current (WSC) influence the climate in the Arctic region as a whole. A large volume of water and ice is transported through Fram Strait, with net water transport of 1.7–3.2 Sv southward in the East Greenland Current and a volume ice flux in the range of 0.06–0.11 Sv. The mean annual ice flux is about 866,000 km2 yr−1. The Kongsfjorden–Krossfjorden fjord system on the coast of Spitsbergen, or at the eastern extreme of Fram Strait, is mainly affected by the northbound transport of water in the WSC. Mixing processes on the shelf result in Transformed Atlantic Water in the fjords, and the advection of Atlantic water also carries boreal fauna into the fjords. The phytoplankton production is about 80 g C m−2 yr−1 in Fram Strait, and has been estimated both below and above this for Kongsfjorden. The zooplankton fauna is diverse, but dominated in terms of biomass by calanoid copepods, particularly Calanus glacialis and C. finmarchicus. Other important copepods include C. hyperboreus, Metridia longa and the smaller, more numerous Pseudocalanus (P. minutus and P. acuspes), Microcalanus (M. pusillus and M. pygmaeus) and Oithona similis. The most important species of other taxa appear to be the amphipods Themisto libellula and T. abyssorum, the euphausiids Thysanoessa inermis and T. longicaudata and the chaetognaths Sagitta elegans and Eukrohnia hamata. A comparison between the open ocean of Fram Strait and the restricted fjord system of Kongsfjorden–Krossfjorden can be made within limitations. The same species tend to dominate, but the Fram Strait zooplankton fauna differs by the presence of meso- and bathypelagic copepods. The seasonal and inter-annual variation in zooplankton is described for Kongsfjorden based on the record during July 1996–2002. The ice macrofauna is much less diverse, consisting of a handful of amphipod species and the polar cod. The ice-associated biomass transport of ice-amphipods was calculated, based on the ice area transport, at about 3.55 × 106 ton wet weight per year or about 4.2 × 105 t C yr−1. This represents a large energy input to the Greenland Sea, but also a drain on the core population residing in the multi-year pack ice (MYI) in the Arctic Ocean. A continuous habitat loss of MYI due to climate warming will likely reduce dramatically the sympagic food source. The pelagic and sympagic food web structures were revealed by stable isotopes. The carbon sources of particulate organic matter (POM), being Ice-POM and Pelagic-POM, revealed different isotopic signals in the organisms of the food web, and also provided information about the sympagic–pelagic and pelagic–benthic couplings. The marine food web and energy pathways were further determined by fatty acid trophic markers, which to a large extent supported the stable isotope picture of the marine food web, although some discrepancies were noted, particularly with regard to predator–prey relationships of ctenophores and pteropods.  相似文献   

4.
AstudyonbenthiccommunitystructureinwestoftheTaiwanStraitandneartheTaiwanShoals¥WuQiquan;JiangJinxiang;XuHuizhou;CaiErxiandLin...  相似文献   

5.
The trophic structure of zooplankton was investigated in Fram Strait (north western Svalbard) in spring and autumn of 2003. Depth-stratified zooplankton samples were collected at 12 stations on the shelf (200 m), across the shelf-slope (500 m) and over deep water (>750 m), using a Multiple Plankton Sampler equipped with 0.180-mm mesh size nets.Higher zooplankton abundance and estimated biomass were found in the shelf area. Abundance and biomass were two times higher in August, when sea-surface temperature was higher than in May. Herbivores dominated numerically in May, and omnivores in August, suggesting a seasonal sequence of domination by different trophic groups. Cirripedia nauplii and Fritillaria borealis prevailed in spring, whereas copepod nauplii and Calanus finmarchicus were numerically the most important herbivores in autumn. Small copepods, Oithona similis and Triconia borealis, were the most numerous omnivorous species in both seasons, but their abundances increased in autumn. Chaetognatha (mainly Eukrohnia hamata) accounted for the highest abundance and biomass among predatory taxa at all deep-water stations and during both seasons. Regarding vertical distribution, herbivores dominated numerically in the surface layer (0–20 m), and omnivores were concentrated somewhat deeper (20–50 m) during both seasons. Maximum abundance of predators was found in the surface layer (0–20 m) in spring, and generally in the 20–50 m layer in autumn. This paper presents the first comprehensive summary of the zooplankton trophic structure in the Fram Strait area. Our goals are to improve understanding of energy transfer through this ecosystem, and of potential climate-induced changes in Arctic marine food webs.  相似文献   

6.
In this paper, the results of long-term studies of the nepheloid layer in the Norwegian Sea in the Komsomolets test area are considered. Its principal characteristics such as its thickness, the particulate matter concentration in the nepheloid layer, and its standing crop are presented. The nepheloid layer is formed by the near-bottom current, which, together with the particulate standing crop, determines the horizontal flux of the sedimentary matter over the continental slope. Also presented are data about the currents in different years of observations as well as estimates of the horizontal fluxes.  相似文献   

7.
8.
Two mean dynamic topography (MDT) fields are determined in the Fram Strait between Svalbard and Greenland. New airborne gravity anomalies, older data, and two different mean sea surface (MSS) fields are combined using the least squares collocation (LSC) technique. The results are compared to an oceanographic MDT model and two synthetic MDT fields. The same main currents are seen in all fields. Additionally, smaller scale features are revealed in the new MDT fields. Geostrophic surface currents derived from the MDT models are compared to moorings and Lagrangian drifters. The agreement is desultory. The oceanographic data are an inadequate basis of comparison due to data gaps. Nevertheless, it is the only one available.  相似文献   

9.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

10.
We determined the sensitivity of the calculated sinking flux of 234Th in the central equatorial Pacific to physical processes and scavenging mechanisms by imposing a meridional and vertical advection and diffusion field on a simple dissolved and particulate 234Th cycle. We used the model to estimate the efficiency with which the 234Th deficiency relative to 238U reflected the predicted sinking flux of 234Th on particles and compared our results with 234Th data taken during the JGOFS-EqPac 1992 Survey II Cruise. 234Th deficiencies near the equator were strongly affected by both vertical advection and horizontal diffusion. The model 234Th deficiency at the equator underestimated the model 234Th sinking flux by 144% in neglecting advection and diffusion in the presence of strong upwelling at the equator. The model 234Th deficiency at the equator corrected for advection overestimated the sinking flux of 234Th by 33% in neglecting horizontal diffusion. Analysis of the scavenging mechanism suggests that, during situations of export governed by rapidly sinking particles, 234Th-based estimates of particle export are only half as sensitive to advection compared to situations of export governed by slowly sinking particles. Given that results using the mechanism of slowly sinking particles compare better with the observed 234Th deficiency and calculated meridional 234Th fluxes at the equator than the mechanism of rapidly sinking particles, we consider the mechanism of slowly sinking particle more appropriate for this region. In agreement with previous studies based on observed 234Th gradients, this study supports the incorporation of vertical advection terms in the 234Th balance to estimate particulate carbon export at the equator but suggests that this method may have overestimated the sinking flux at the equator during EqPac Survey II by 0–63% due to the role of horizontal diffusion.  相似文献   

11.
Optical transmissometer measurements were coupled with particulate organic matter (POM) observations to understand suspended sediment composition and distribution in the eastern Cariaco Basin during the rainy seasons of September 2003 and 2006. Our results suggest that nepheloid layers originating at the mouth of small mountainous rivers discharging into the eastern Basin are a major delivery mechanism of terrigenous sediments to the Basin interior. Intermediate nepheloid layers (INL) were observed near the shelf break (~100 m) and appear to effectively transport terrigenous material laterally from the shelf to deep waters, thereby providing a plausible supply mechanism of the terrestrial material observed in sediment traps. These findings highlight the importance of small, local rivers in the Cariaco Basin as sources of terrestrial material. In contrast, these nepheloid layers contained only limited POM. When this information is combined with published sediment trap POM data, it suggests that nepheloid layers may not be a primary mechanism for delivering terrigenous POM to the deeper waters of the basin during the rainy season. Rather, BNL may redistribute marine-derived POM from shallow waters to the Basin's interior by providing ballast materials, particularly during episodic events driven by wind and precipitation. Though we have determined that nepheloid layers play an important role in the seaward transport of particulate material in the Cariaco Basin, their composition and temporal variability have not been fully characterized. This is critical to understand lateral particle transport, since nepheloid layers constitute a significant source of sediment to the deep Cariaco Basin.  相似文献   

12.
Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive ~(234)Th in both dissolved and particulate phases were used to examine the kinetics of particle-reactive metal adsorption,removal,and residence in a newly found hydrothermal plume over the Southwest Indian Ridge.The results showed a relatively low value on ~(234)Th/~(238)U ratios(i.e.,0.73-0.88) compared to the deep oceans,indicating an enhanced adsorption of particle-reactive metals onto particulate matter in the plume.Based on the ~(234)Th-~(238)U disequilibria,the adsorption and sinking rate constants of ~(234)Th averaged(0.009±0.001) d~(-1) and(0.113±0.024) d~(-1) in the hydrothermal plume,corresponding to the residence times of(115±19) d and(16±5) d for dissolved and particulate ~(234)Th,respectively.This timescale allows vent-discharged particle-reactive metals to disperse hundreds to thousands of miles away.Thus,hydrothermal activities might influence the metal distribution in deep ocean over a very large scope.Also,a high sinking flux of(36.2±5.4) B q/(m~2·d) for ~(234)Th was observed for the plume,suggesting an enrichment of metal in particles deposited close to the vent.The enhancement of particle sinking could also benefit the transport of organic carbon and nitrogen and fuel the benthic ecosystems under the plume regimes.Thus,hydrothermal plumes may have an impact on both the elemental geochemistry and/or ecosystem to the deep oceans interior than previous expectation.  相似文献   

13.
14.
To determine the exchanges between the Nordic Seas and the Arctic Ocean through Fram Strait is one of the most important aspects, and one of the major challenges, in describing the circulation in the Arctic Mediterranean Sea. Especially the northward transport of Arctic Intermediate Water (AIW) from the Nordic Seas into the Arctic Ocean is little known. In the two-ship study of the circulation in the Nordic Seas, Arctic Ocean - 2002, the Swedish icebreaker Oden operated in the ice-covered areas in and north of Fram Strait and in the western margins of Greenland and Iceland seas, while RV Knorr of Woods Hole worked in the ice free part of the Nordic Seas. Here two hydrographic sections obtained by Oden, augmented by tracer and velocity measurements with Lowered Acoustic Doppler Current Profiler (LADCP), are examined. The first section, reaching from the Svalbard shelf across the Yermak Plateau, covers the region north of Svalbard where inflow to the Arctic Ocean takes place. The second, western, section spans the outflow area extending from west of the Yermak Plateau onto the Greenland shelf. Geostrophic and LADCP derived velocities are both used to estimate the exchanges of water masses between the Nordic Seas and the Arctic Ocean. The geostrophic computations indicate a total flow of 3.6 Sv entering the Arctic on the eastern section. The southward flow on the western section is found to be 5.1 Sv. The total inflow to the Arctic Ocean obtained using the LADCP derived velocities is much larger, 13.6 Sv, and the southward transport on the western section is 13.7 Sv, equal to the northward transport north of Svalbard. Sulphur hexafluoride (SF6) originating from a tracer release experiment in the Greenland Sea in 1996 has become a marker for the circulation of AIW. From the geostrophic velocities we obtain 0.5 Sv and from the LADCP derived velocities 2.8 Sv of AIW flowing into the Arctic. The annual transport of SF6 into the Arctic Ocean derived from geostrophy is 5 kg/year, which is of the same magnitude as the observed total annual transport into the North Atlantic, while the LADCP measurements (19 kg/year) imply that it is substantially larger. Little SF6 was found on the western section, confirming the dominance of the Arctic Ocean water masses and indicating that the major recirculation in Fram Strait takes place farther to the south.  相似文献   

15.
Interannual salinity variations in the Tsushima Strait are investigated on the basis of historical hydrographic data. The EOF analysis revealed that the most dominant mode is the in-phase salinity variation between the eastern and western channels. The time coefficients of the EOF first mode in summer show a negative correlation with the Changjiang discharge, which indicates that salinity in the Tsushima Strait tends to decrease over summer, related to a large discharge of the Changjiang. The eigenvectors of the first mode are larger in the eastern channel than those in the western channel, though the low salinity water mainly flows through the western channel. This is because the low salinity water spreads into the eastern channel as well as the western channel over summers with a large discharge of the Changjiang. The out-of-phase salinity variation between the channels is extracted as the EOF second mode; this is the predominant variation in the western channel. The time coefficients of the second mode in summer show no significant correlations to the volume transports through the western channel and the transport differences between channels. A relationship between the EOF second mode and variations in the wind stress over the East China Sea is suggested.  相似文献   

16.
During cruise 73-A-3 of the R/V “Alaminos”, seawater samples from the nepheloid layer and overlying water were collected and filtered through 0.4 μm Millipore® Ultra Thin filters for microscopic analysis with a Jeol JSM-U3 scanning electron microscope. The results of the studies of the suspended matter with the scanning electron microscope indicate that there is a significant increase in the percentage of the total number of particles that are associated as aggregates for the nepheloid layer relative to the overlying water. This suggests that once nepheloid layers are formed, they might represent regions of high sedimentation due to aggregate formation.  相似文献   

17.
《Journal of Sea Research》1999,41(1-2):73-86
Processes in the benthic boundary layer (BBL) at different continental margins are described and the importance of lateral advection, particle aggregation, biodeposition and the resuspension loops within the BBL are discussed. New methods of BBL research are demonstrated and a possible solution is given to the benthic carbon budget problem (i.e. benthic carbon demand versus vertical carbon flux) for continental margins in relation to the understanding of soft-bottom ecosystems.  相似文献   

18.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

19.
吕宋海峡纬向海流及质量输送   总被引:24,自引:6,他引:24  
分析和计算了吕宋海峡PR21断面最近海洋调查的部分CTD资料和ADCP资料,再一次证明吕宋海峡常年存在纬向流。但对于天气尺度而言,该流型是多变的。根据高分辨率的海洋环流数值模式4a(1992~1996年)海平面高度(SSH)的输出值,运用地转关系估计了吕宋海峡纬向流的月平均值。研究表明;通过海峡流入、流出南海纬向流的深度一般达到500m左右,200m以上流速较大,平均流速为50cm/s,最大时达80cm/s以上。500m以下的纬向地转流流速较小,通常小于10cm/s.由大洋进入海峡的入流位置位于海峡的中部和南部,月平均入流最大值出现在11月,为50cm/s.位于海峡的北部和南部上层海洋的月平均出流,最大流速亦出现在11月,也为50cm/s,这与秋季北赤道流分叉位置最北(15°N),春季分叉位置最南(14°N)有关。上层流入、流出海峡的流量的月平均值分别约为10×106m3/s和5×106m3/s.当东北季风盛行时(从10月到翌年2月),流入海峡的流量远大于流出海峡的流量,两者的差可达8×106m3/s,而在其他季节两者的差仅为3×106m3/s.这说明东北季风盛行时,会有较多的水从南海南?  相似文献   

20.
台湾海峡作为连接东海和南海的重要通道,其悬浮体和沉积物的来源和输运格局非常复杂。2005年4~5月利用带有浊度传感器和荧光传感器的SD204型CTD对台湾海峡西南部海域627个站位的悬浮体特性进行了综合调查,并采集了底层沉积物。在室内分别利用英国Marlvern公司生产的Mastersizer 2000型激光粒度仪和德国ELEMENTOR公司生产的ELEMENTOR varioELIII型元素分析仪对表层沉积物进行了粒度分析和沉积物碳、氮含量测定,结果表明,台湾海峡西南部海域春季受粤东沿岸流、韩江冲淡水、九龙江冲淡水及台湾海峡混合水影响,其中粤东沿岸流在向北输运过程中影响强度逐渐减弱,韩江冲淡水影响范围较大,并且在西南季风的控制下向东北方向输运;长时间尺度的沉积物输运格局表明,近岸沉积物由岸向海输运,远海地区沉积物由海向岸输运,并且在汕尾南部海域、南澳岛东南部海域形成了沉积物的汇聚区,沉积物以陆源为主;表层沉积物的输运过程受控于区域内水团、悬浮体分布及运动格局;在春季上升流形成早期尽管叶绿素荧光值相对较低,但其对表层沉积物的输运过程起着非常重要的控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号