首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the last decade the analysis of Earth observation data has evolved from what were predominantly per-pixel multispectral-based approaches, to the development and application of multiscale object-based methods. To empower users with these emerging object-based approaches, methods need to be intuitive, easy to use, require little user intervention, and provide results closely matching those generated by human interpreters. In an attempt to facilitate this, we present multiscale object-specific segmentation (MOSS) as an integrative object-based approach for automatically delineating image-objects (i.e., segments) at multiple scales from a high-spatial resolution remotely sensed forest scene. We further illustrate that these segments cognitively correspond to individual tree crowns, ranging up to forest stands, and describe how such a tool may be used in computer-assisted forest inventory mapping. MOSS is composed of three primary components: object-specific analysis (OSA), object-specific upscaling (OSU), and a new segmentation algorithm referred to as size constrained region merging (SCRM). The rationale for integrating these methods is that the first two provide the third with object-size parameters that otherwise would need to be specified by a user. Analysis is performed on an IKONOS-2 panchromatic image that represents a highly fragmented forested landscape in the Sooke Watershed on southern Vancouver Island, BC, Canada.  相似文献   

2.
Efficient forest fire management requires precise and up-to-date knowledge regarding the composition and spatial distribution of forest fuels at various spatial and temporal scales. Fuel-type maps are essential for effective fire prevention strategies planning, as well as the alleviation of the environmental impacts of potential wildfire events. The aim of this study was to assess and compare the potential of Disaster Monitoring Constellation and Landsat-8 OLI satellite images (Operational Land Imager), combined with Object-Based Image Analysis (GEOBIA), in operational mapping of the Mediterranean fuel types at a regional scale. The results showcase that although the images of both sensors can be used with GEOBIA analysis for the generation of accurate fuel-type maps, only the OLI images can be considered as applicable for regional mapping of the Mediterranean fuel types on an operational basis.  相似文献   

3.
Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.  相似文献   

4.
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000–2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000–2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.  相似文献   

5.
The potentialities of satellite remote sensing for acquiring informations useful for forest management have already been recognised. The analysis of satellite data can provide reconnaissance survey maps showing the spatial distribution of forest type and other useful information of the existing forest resources in the area in very short time. The present study has been carried out in Godavari river Basin, Nallamalai and Seshachalam hiil ranges, which are potential areas for Teak, bamboo and red-sanders respectively. The three Landsat scenes have been analysed using Multispectral Data Analysis System (M-Das) to make maps on 1:250,000 scale. The Computer classified colour coded maps show the spatial distribution of the industrially important species and association with other forest types existing in the area. The results have been discussed in the context of using Landsat data for reconnaissance survey of forest resources at a national level.  相似文献   

6.
This study aims to test the performance of the Rotation Forest (RTF) algorithm in urban and rural areas that have similar characteristics using unmanned aerial vehicle (UAV) images to produce the most up-to-date and accurate land use maps. The performance of the RTF algorithm was compared to other ensemble methods such as Random Forest (RF) and Gentle AdaBoost (GAB) for object-based classification. RGB bands and other variables (i.e. ratio, mean, standard deviation, ... etc.) were also used in classification. The accuracy assessments showed that the RTF method, with 92.52 and 91.29% accuracies, performed better than the RF (2 and 4%) and GAB (5 and 8%) methods in urban and rural areas, respectively. The significance of differences in classification methods was also analysed using the McNemar test. Consequently, this study shows the success of the RTF algorithm in the object-based classification of UAV images for land use mapping.  相似文献   

7.
This letter aims to exploit morphological textures in discriminating three mangrove species and surrounding environment with multispectral IKONOS imagery in a study area on the Caribbean coast of Panama. Morphological texture features are utilized to distinguish red (Rhizophora mangle), white (Laguncularia racemosa), and black (Avicennia germinans) mangroves and rainforest regions. Meanwhile, two fusion methods are presented, i.e., vector stacking and support vector machine (SVM) output fusion, for integrating the hybrid spectral–textural features. For comparison purposes, the object-based analysis and the gray-level co-occurrence matrix (GLCM) textures are adopted. Results revealed that the morphological feature opening by reconstruction (OBR) followed by closing by reconstruction (CBR) and its dual operator CBR followed by OBR gave very promising accuracies for both mangrove discrimination (89.1% and 91.1%, respectively) and forest mapping (91.4% and 93.7%, respectively), compared with the object-based analysis (80.5% for mangrove discrimination and 82.9% for forest mapping) and the GLCM method (81.9% and 87.2%, respectively). With respect to the spectral–textural information fusion algorithms, experiments showed that the SVM output fusion could obtain an additional 2.0% accuracy improvement than the vector-stacking approach.   相似文献   

8.
利用激光雷达和多角度频谱成像仪数据估测森林垂直参数   总被引:3,自引:0,他引:3  
植被的结构参数如植被高度、生物量、水平和垂直分布等,是影响陆地与大气能量交换乃至生物圈多样性的重要因素。多数遥感系统虽然可以提供植被水平结构的图像,但是不能提供植被成分垂直分布的信息。大尺度激光雷达仪器如LVIS产生的激光雷达信号,已成功地用于估计树高和森林生物量,然而大多数激光雷达仪器不具备图像能力,只能提供一个区域内的采样数据。其他的遥感数据如多角度高光谱、多频率多时相辐射计或雷达数据,可根据GLAS(Geoscience Laser Altimeter System)采样的测量用来推断出连续的森林结构区域覆盖参数。 MISR(Multi-angle Imaging Spectrometer)对陆表多角度的成像能力,可以通过BRDF的各向异性提供植被的结构信息。结合激光雷达的垂直采样和MISR的图像,区域内乃至全球性的森林空间参数的成像是可能的。ICESat卫星上的GLAS数据、Terra卫星上的MISR数据为区域或全球性森林结构参数提供了可能。本文的研究目的是评估GLAS数据,分析类似于MISR的数据对森林结构参数的估计能力。本文中使用了LVIS、AirMISR和GLAS数据。通过对GLAS树高的测量与GLAS像元内来自LVIS的平均树高对比,发现它们是高度相关的。同时还探讨了多角度频谱成像仪数据预测树高信息的能力,这将在今后区域内森林结构参数映射加以研究。  相似文献   

9.
Airborne high–spatial resolution images were evaluated for mapping purposes in a complex Atlantic rainforest environment in southern Brazil. Two study sites, covered predominantly by secondary evergreen rainforest, were surveyed by airborne multispectral high-resolution imagery. These aerophotogrammetric images were acquired at four spectral bands (visible to near-infrared) with spatial resolution of 0.39 m. We evaluated different data input scenarios to suit the object-oriented classification approach. In addition to the four spectral bands, auxiliary products such as band ratios and digital elevation models were considered. Comparisons with traditional pixel-based classifiers were also performed. The results showed that the object-based classification approach yielded a better overall accuracy, ranging from 89% to 91%, than the pixel-based classifications, which ranged from 62% to 63%. The individual classification accuracy of forest-related classes, such as young successional forest stages, benefits the object-based approach. These classes have been reported in the literature as the most difficult to map in tropical environments. The results confirm the potential of object-based classification for mapping procedures and discrimination of successional forest stages and other related land use and land cover classes in complex Atlantic rainforest environments. The methodology is suggested for further SAAPI acquisitions in order to monitor such endangered environment as well as to support National Land and Environmental Management Protocols.  相似文献   

10.
Each year thousands of ha of forest land are affected by forest fires in Southern European countries such as Spain. Burned area maps are a valuable instrument for designing prevention and recovery policies. Remote sensing has increasingly become the most widely used tool for this purpose on regional and global scales, where a large variety of techniques and data has been applied. This paper proposes a semiautomatic method for burned area mapping on a regional scale in Mediterranean areas (the Iberian Peninsula has been used as a study case). A Multi-layer Perceptron Network (MLPN) has been designed and applied to MODIS/Terra Surface Reflectance Daily L2G Global 500m SIN Grid multitemporal composite monthly images. The compositing criterion was based on maximum surface temperature. The research covered a six year period (2001–2006) from June to September, when most of the forest fires occur. The resulting burned area maps have been validated using official fire perimeters and compared with MODIS Collection 5 Burned Area Product (MCD45A1). The MLPN shown as an effective method, with a commission error of 29.1%, in the classification of the burned areas, while the omission error was of 14.9%. The results were compared with the MCD45A1 product, which had a slightly higher commission error (30.2%) and a considerably higher omission error (26.2%), indicating a high underestimation of the burned area.  相似文献   

11.
Fuel type mapping of the wildland-urban interface (WUI) in support of fire spread simulation modelling should include both natural and urban features. The objective of this study was to evaluate the utility of (1) Light Detection and Ranging (LiDAR) structural data, (2) ortho-image data and (3) a combination of both as input to an object-based classification approach for mapping fuels within two WUI areas in San Diego, California. A separability analysis was utilized to determine the surface topographical and spectral layers most influential for discriminating WUI fuels. An accuracy assessment revealed that the combination of LiDAR and ortho-image data inputs substantially increased classification accuracy by 20–30% and achieved overall accuracies?>?80%. Results from the study provide knowledge on how reliable fuel types within the WUI can be mapped using high-resolution LiDAR and ortho-image data while presenting new insights into fuel type mapping.  相似文献   

12.
及时准确地获取耕地空间分布数据对于农业生产管理、产量估算、种植结构调整等具有重要意义。目前的耕地提取多基于多时相中低分辨率影像或单时相高分辨率影像,难以满足耕地破碎,农作物种植模式复杂的区域精度需求。基于此,本研究通过协同国产高分一号(GF-1)、高分二号(GF-2)和高分六号(GF-6)卫星影像,探索米级分辨率尺度下的耕地高精度提取方法。该方法以深度神经网络UNet为基础,通过协同GF-1/6的多时相优势和GF-2影像的高空间分辨率构建了CEUNet (Cropland Extraction UNet)模型,以充分挖掘耕地的时相特征和空间几何特征。同时,将基于CEUNet模型提取的米级耕地结果分别与基于UNet和多源不同分辨率遥感影像的语义分割(UNet_m)、基于UNet和单时相高分辨率影像的语义分割(UNet_s)、基于对象的随机森林分类(OBIA)、基于像元的随机森林分类(RF)提取的耕地结果展开对比,分析所提出的方法在不同区域的适宜性。结果表明,基于CEUNet模型提取的米级耕地总体精度达到92.92%,且基于CEUNet提取的耕地的逐像元验证结果在平均F1-Score值上相...  相似文献   

13.
This study examined the applicability of data fusion and classifier ensemble techniques for vegetation mapping in the coastal Everglades. A framework was designed to combine these two techniques. In the framework, 20-m hyperspectral imagery collected from Airborne Visible/Infrared Imaging Spectrometer was first merged with 1-m Digital Orthophoto Quarter Quads using a proposed pixel/feature-level fusion strategy. The fused data set was then classified with an ensemble approach based on two contemporary machine learning algorithms: Random Forest and Support Vector Machine. The framework was applied to classify nine vegetation types in a portion of the coastal Everglades. An object-based vegetation map was produced with an overall accuracy of 90% and Kappa value of 0.86. Per-class classification accuracy varied from 61% for identifying buttonwood forest to 100% for identifying red mangrove scrub. The result shows that the framework is promising for automated vegetation mapping in the Everglades.  相似文献   

14.
Mapping plant communities and documenting their changes is critical to the on-going Florida Everglades restoration project. In this study, a framework was designed to map dominant vegetation communities and inventory their changes in the Florida Everglades Water Conservation Area 2A (WCA-2A) using time series Landsat images spanning 1996–2016. The object-based change analysis technique was combined in the framework. A hybrid pixel/object-based change detection approach was developed to effectively collect training samples for historical images with sparse reference data. An object-based quantification approach was also developed to assess the expansion/reduction of a specific class such as cattail (an invasive species in the Everglades) from the object-based classifications of two dates of imagery. The study confirmed the results in the literature that cattail was largely expanded during 1996–2007. It also revealed that cattail expansion was constrained after 2007. Application of time series Landsat data is valuable to document vegetation changes for the WCA-2A impoundment. The digital techniques developed will benefit global wetland mapping and change analysis in general, and the Florida Everglades WCA-2A in particular.  相似文献   

15.
An accurate map of forest types is important for proper usage and management of forestry resources. Medium resolution satellite images (e.g., Landsat) have been widely used for forest type mapping because they are able to cover large areas more efficiently than the traditional forest inventory. However, the results of a detailed forest type classification based on these images are still not satisfactory. To improve forest mapping accuracy, this study proposed an operational method to get detailed forest types from dense Landsat time-series incorporating with or without topographic information provided by DEM. This method integrated a feature selection and a training-sample-adding procedure into a hierarchical classification framework. The proposed method has been tested in Vinton County of southeastern Ohio. The detailed forest types include pine forest, oak forest, and mixed-mesophytic forest. The proposed method was trained and validated using ground samples from field plots. The three forest types were classified with an overall accuracy of 90.52% using dense Landsat time-series, while topographic information can only slightly improve the accuracy to 92.63%. Moreover, the comparison between results of using Landsat time-series and a single image reveals that time-series data can largely improve the accuracy of forest type mapping, indicating the importance of phenological information contained in multi-seasonal images for discriminating different forest types. Thanks to zero cost of all input remotely sensed datasets and ease of implementation, this approach has the potential to be applied to map forest types at regional or global scales.  相似文献   

16.
Very high resolution hyperspectral data should be very useful to provide detailed maps of urban land cover. In order to provide such maps, both accurate and precise classification tools need, however, to be developed. In this letter, new methods for classification of hyperspectral remote sensing data are investigated, with the primary focus on multiple classifications and spatial analysis to improve mapping accuracy in urban areas. In particular, we compare spatial reclassification and mathematical morphology approaches. We show results for classification of DAIS data over the town of Pavia, in northern Italy. Classification maps of two test areas are given, and the overall and individual class accuracies are analyzed with respect to the parameters of the proposed classification procedures.  相似文献   

17.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.  相似文献   

18.
Forest canopy density stratification using biophysical modeling   总被引:1,自引:0,他引:1  
Forest canopy density is an important parameter to assess the ecological conditionsviz, light penetration through canopy, undergrowth, surface reflectance, rainfall interception, etc. in a forest landscape. The rate of change in the cover and density has increased due to human need for fuel and fodder. Hence, quick, repetitive and accurate information about forest density is required at the local, regional, state and national levels for sustainable forest management. Satellite remote sensing has the potential to provide information on the forest canopy closure. The present study aims at forest canopy density mapping using satellite remote sensing data using three techniques: visual interpretation (VI), object oriented image segmentation (OOIS) and biophysical modeling (BM). On comparing the techniques, the BM has been found to be the better density mapping technique than other two in terms of accuracy, efficiency and high correlation with ground estimates.  相似文献   

19.
With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images.  相似文献   

20.
本文以大兴安岭无人机遥感数据为基础进行森林密度制图,并提出了一种局部阈值算法,通过与传统的Otsu方法去除背景噪声相比,得出了该方法在中等或较低森林株数密度地区能很好地去除噪声背景。结合局部最大值法取得很好的单木提取精度,其查全率达到了100%。传统的Otsu去除背景方法在较高森林株数密度地区具有较好的识别效果,但对非林分的空地信息存在错提取的现象。通过对以上两种方法的对比研究,得到大兴安岭森林株数密度制图结果,该研究可为稀疏森林区域的株数密度制图提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号