共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
《International Journal of Digital Earth》2013,6(3):194-216
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes. 相似文献
5.
陆表覆盖变化影响地表特征从而改变地表能量平衡是理解人类活动对全球气候变化影响的关键环节。选择国际气候谈判主要国家的美国、印度和巴西作为中国的对比国,对比分析不同国别、不同气候带典型陆表覆盖类型的地表反照率时空差异,进而模拟开垦和城市化等陆表覆盖变化对反照率的影响差异。结果表明:(1) 2000年—2015年,中国、美国的地表反照率年际变化存在明显的气候带空间分异特征,中国干旱半干旱区和美国中低纬湿润区表现出降低趋势,而中国亚热带湿润和美国高纬与中部干旱区则表现出明显的升高趋势,印度的地表反照率年际变化呈微弱下降趋势,而巴西为微弱上升趋势。(2)无雪覆盖时,耕地、林地、草地和人造地表反照率具有夏高、冬低的时间变化特征,干旱半干旱区反照率明显高于湿润区。4种类型的国别差异体现在,中国亚热带湿润区地表反照率均以上升为主,干旱半干旱区则相反;美国除耕地在干旱区呈较强的升高趋势外,其余类型基本为降低趋势;印度均表现为降低趋势;巴西则表现为略微升高趋势。(3)与无雪覆盖相比,有雪覆盖时不同陆表覆盖类型地表反照率均有所提高,林地提高幅度最小,约0.06—0.26,耕地提高最大,约为0.17—0.38,且中国林地反照率提高幅度略高于美国。(4)原陆表覆盖为林地时,开垦和城镇化均导致地表反照率升高,且干旱区升高幅度高于湿润区,湿润区的升高幅度随纬度降低而减弱;为草地时,开垦主要在巴西、印度和中、美亚热带湿润区引起地表反照率升高。而城镇化引起的反照率变化则受到原有地表覆盖、季节和气候背景影响存在较复杂的国别和气候带差异。 相似文献
6.
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC). 相似文献
7.
《International Journal of Digital Earth》2013,6(6):492-509
Land cover monitoring using digital Earth data requires robust classification methods that allow the accurate mapping of complex land cover categories. This paper discusses the crucial issues related to the application of different up-to-date machine learning classifiers: classification trees (CT), artificial neural networks (ANN), support vector machines (SVM) and random forest (RF). The analysis of the statistical significance of the differences between the performance of these algorithms, as well as sensitivity to data set size reduction and noise were also analysed. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land cover categories in south Spain. Overall, statistically similar accuracies of over 91% were obtained for ANN, SVM and RF. However, the findings of this study show differences in the accuracy of the classifiers, being RF the most accurate classifier with a very simple parameterization. SVM, followed by RF, was the most robust classifier to noise and data reduction. Significant differences in their performances were only reached for thresholds of noise and data reduction greater than 20% (noise, SVM) and 25% (noise, RF), and 80% (reduction, SVM) and 50% (reduction, RF), respectively. 相似文献
8.
This study proposes a landscape metrics-based method for model performance evaluation of land change simulation models. To quantify model performance at both landscape and class levels, a set of composition- and configuration-based metrics including number of patches, class area, landscape shape index, mean patch area and mean Euclidean nearest neighbour distance were employed. These landscape metrics provided detailed information on simulation success of a cellular automata-Markov chain (CA-Markov) model standpoint of spatial arrangement of the simulated map versus the corresponding reference layer. As a measure of model simulation success, mean relative error (MRE) of the metrics was calculated. At both landscape and class levels, the MRE values were accounted for 22.73 and 10.2%, respectively, which are further categorised into qualitative measurements of model simulation performance for simple and quick comparison of the results. Findings of the present study depict a hierarchical and multi spatial level assessment of model performance. 相似文献
9.
基于人工神经元网络技术的土地利用/覆盖变化探测 总被引:6,自引:0,他引:6
针对现有的一些土地利用/覆盖变化探测方法存在的某些不足,提出了利用人工神经元网络(antificial neural network,ANN)进行土地利用/覆盖变化探测的方法,并对ANN网络的输出输出,网络结构和不同的网络模型进行了深入研究,充分利用已有的基础地理信息和高分辨率遥感影像辅助选取了ANN训练样本,试验结果表明,利用ANN总体上可提高土地利用/覆盖变化探测效率。 相似文献
10.
AbstractThis study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. 相似文献
11.
12.
Reliable land cover land use (LCLU) information, and change over time, is important for Green House Gas (GHG) reporting for climate change documentation. Four different organizations have independently created LCLU maps from 2010 satellite imagery for Malawi for GHG reporting. This analysis compares the procedures and results for those four activities. Four different classification methods were employed; traditional visual interpretation, segmentation and visual labelling, digital clustering with visual identification and supervised signature extraction with application of a decision rule followed by analyst editing. One effort did not report classification accuracy and the other three had very similar and excellent overall thematic accuracies ranging from 85 to 89%. However, despite these high thematic accuracies there were very significant differences in results. National percentages for forest ranged from 18.2 to 28.7% and cropland from 40.5 to 53.7%. These significant differences are concerns for both remote-sensing scientists and decision-makers in Malawi. 相似文献
13.
MODIS土地覆盖分类的尺度不确定性研究 总被引:2,自引:0,他引:2
以空间异质性较强的枯水期鄱阳湖为研究区,以搭载于同一卫星平台、具有同一观测时间和较高空间分辨率的ASTER数据为参照,分析研究了MODIS数据在土地覆盖分类中由空间尺度带来的不确定性。首先基于MODIS三角权重函数,建立了从ASTER到MODIS的尺度转换方法;然后对不同空间分辨率的数据进行土地覆盖分类,并基于误差矩阵和线性模型分析了MODIS土地覆盖分类结果的误差来源。结果表明,空间分辨率和光谱分辨率与成像方式这两类因素对MODIS与ASTER分类结果差异的贡献比例约为(6.6—11.2):2;MODIS像元尺度对研究区水体的分类不确定性影响较低,而对森林的不确定性影响可达63%。由此可见,在基于MODIS数据的土地覆盖分类研究中,空间尺度所产生的不确定性是比较显著的。这些研究结果对于土地覆盖分类及变化检测、尺度效应和景观生态学不确定性研究,有积极的参考意义。 相似文献
14.
随着对GIS中的空间对象模型和自然地理特征表达的研究深入,模糊空间对象被提出。针对模糊空间对象表达的特点,提出了一种基于模糊神经网络的模糊空间对象生成方法。该方法将模糊技术与神经网络相结合,利用神经网络的学习能力调整模糊隶属函数和模糊规则,使系统具备自适应的特性。实验表明,这种基于模糊神经网络的生成模糊空间对象的方法比传统方法大大的提高了成果的精度。 相似文献
15.
随着对GIS中的空间对象模型和自然地理特征表达的研究深入,模糊空间对象被提出。针对模糊空间对象表达的特点,提出了一种基于模糊神经网络的模糊空间对象生成方法。该方法将模糊技术与神经网络相结合,利用神经网络的学习能力调整模糊隶属函数和模糊规则,使系统具备自适应的特性。实验表明,这种基于模糊神经网络的生成模糊空间对象的方法比传统方法大大的提高了成果的精度。 相似文献
16.
The world’s largest mangrove ecosystem, the Sunderbans is experiencing multidimensional threats of degradation. The present study was aimed to understand these problems and search for proper remedies by applying suitable remote sensing technologies. South-western parts of Indian Sunderbans Biosphere Reserve had been chosen for assessment of land use/land cover changes in between 1975 and 2006 by using multitemporal Landsat data. Results indicated considerable reduction of open mangrove stands and associated biodiversity mainly in the forest-habitation interference zones of Sunderbans. On the contrary, increase in the coverage of dense mangroves in the reserved forests had been observed indicating the existence of proper centralized management regimes. Overall, a cumulative loss of approximately 0.42% of its original mangrove cover in between 1975 and 2006 had been estimated for this part of the Sunderbans which was at parity with the findings of other studies in the Sunderbans or similar mangrove ecosystems of the tropics. Expansion of non agricultural lands in the last two decades was found to be related with the growth of new settlements, tourism infrastructure, and facilities. This transformation was attributed to the shifting of local peoples’ interest from traditional forestry and subsistence farming towards alternative occupations like shrimp culture, coastal tourism, and commercial fishing although environmentally hazardous livelihood activities like collection of prawn seeds along the riverbanks were still persistent. 相似文献
17.
18.
Assessing changes in the above ground biomass and carbon stocks of Lidder valley,Kashmir Himalaya,India 总被引:1,自引:0,他引:1
The changes in the land use and land cover (LULC), above ground biomass (AGB) and the associated above ground carbon (AGC) stocks were assessed in Lidder Valley, Kashmir Himalaya using satellite data (1980–2013), allometric equations and phytosociological data. Change detection analysis of LULC, comprising of eight vegetation and five non-vegetation types, indicated that 6% (74.5 km2) of the dense evergreen forest has degraded. Degraded forest and settlement increased by 20 and 52.8 km2, respectively. Normalized difference vegetation index was assessed and correlated with the field-based biomass estimates to arrive at best-fit models for remotely sensed AGB estimates for 2005 and 2013. Total loss of 1.018 Megatons of AGB and 0.5 Megatons of AGC was estimated from the area during 33-year period which would have an adverse effect on the carbon sequestration potential of the area which is already facing the brunt of climate change. 相似文献
19.
Maximum likelihood (ML) and artificial neural network (ANN) classifiers were applied to three Landsat Thematic Mapper (TM) image sub-scenes (termed urban, agricultural and semi-natural) of Cukurova, Turkey. Inputs to the classifications comprised (i) spectral data and (ii) spectral data in combination with texture measures derived on a per-pixel basis. The texture measures used were: the standard deviation and variance and statistics derived from the co-occurrence matrix and the variogram. The addition of texture measures increased classification accuracy for the urban sub-scene but decreased classification accuracy for agricultural and semi-natural sub-scenes. Classification accuracy was dependent on the nature of the spatial variation in the image sub-scene and, in particular, the relation between the frequency of spatial variation and the spatial resolution of the imagery. For Mediterranean land, texture classification applied to Landsat TM imagery may be appropriate for the classification of urban areas only. 相似文献