首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.  相似文献   

2.
The Met Office Hadley Centre Unified Model (HadAM3) with the tiled version of the Met Office Surface Exchange Scheme (MOSES2) land surface scheme is used to assess the impact of a comprehensive imposed vegetation annual cycle on global climate and hydrology. Two 25-year numerical experiments are completed: the first with structural vegetation characteristics (Leaf Area Index, LAI, canopy height, canopy water capacity, canopy heat capacity, albedo) held at annual mean values, the second with realistic seasonally varying vegetation characteristics. It is found that the seasonalities of latent heat flux and surface temperature are widely affected. The difference in latent heat flux between experiments is proportional to the difference in LAI. Summer growing season surface temperatures are between 1 and 4 K lower in the phenology experiment over a majority of grid points with a significant vegetation annual cycle. During winter, midlatitude surface temperatures are also cooler due to brighter surface albedo over low LAI surfaces whereas during the dry season in the tropics, characterized by dormant vegetation, surface temperatures are slightly warmer due to reduced transpiration. Precipitation is not as systematically affected as surface temperature by a vegetation annual cycle, but enhanced growing season precipitation rates are seen in regions where the latent heat flux (evaporation) difference is large. Differences between experiments in evapotranspiration, soil moisture storage, the timing of soil thaw, and canopy interception generate regional perturbations to surface and sub-surface runoff annual cycles in the model.  相似文献   

3.
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.  相似文献   

4.
A soil-atmosphere-transfer model (SATM) was evaluated using observational data from the Tongyu Cropland Station and Audubon Research Ranch in semiarid areas, where the land cover was nearly bare soil during the simulation period. Simulations by the SATM at both sites were conducted using the new and original surface thermal roughness length parameterization schemes, respectively. Comparisons of simulations and observations have demonstrated that using the new surface thermal roughness length scheme in this model made sound improvements in the simulation of soil surface temperatures, sensible heat fluxes and net radiation fluxes in the daytime at both sites, compared to the original scheme, because the new scheme produced a larger aerodynamic resistance for turbulent heat transfer in the daytime. With respect to latent heat fluxes, the improvement was not as obvious as that attained for soil surface temperature since the soil water content in the surface layer in a semiarid area is a more important factor than surface soil temperature in controlling evaporation rate. Accordingly, it can be concluded that the new surface thermal roughness length parameterization scheme could improve the ability of the SATM to simulate bare soil surface energy budget with latent heat flux component being innegligible in semiarid areas.  相似文献   

5.
6.
利用位于青藏高原东侧理塘大气综合观测站2008年观测资料,分析了高寒草甸下垫面上地表通量的时间变化特征,确定了温度、水汽和CO2的归一化标准差在不稳定情况下随稳定度变化的通量方差关系,应用通量方差法对感热、潜热和CO2通量进行了计算,并与涡旋相关系统的观测结果进行了比较。结果表明:地表通量月平均日变化呈较为规则的日循环特征,季节变化特征也很明显,雨季(5-9月)潜热大于感热,干季则以感热为主,CO2通量以6-9月值最大。在不稳定条件下,温度、水汽和CO2的归一化标准差随稳定度的变化均满足-1/3规律,其通量方差相似性常数分别为1.2,1.4和0.9。通量方差法估算出的通量值与涡旋相关观测得到的通量值有较好的一致性,但感热通量的效果优于潜热通量和CO2通量。该方法高估了感热通量尤其是潜热通量,而低估了CO2通量。采用直接观测的感热通量值计算潜热通量和CO2通量可改善计算结果。  相似文献   

7.
本文基于2007年和2008年生长季内蒙古羊草和大针茅草原湍流观测资料,分析了两种典型草原下垫面生长季的不同土壤水分条件下水汽和二氧化碳通量交换特征及其控制因子。主要结果如下:(1)在植被生长峰值期,日尺度上,干旱条件下土壤湿度是潜热通量的主要控制因子,而土壤水分条件较好时潜热通量主要受净辐射控制。(2)与大针茅草原相比,羊草草原叶面积指数较大,水分条件较好时,其潜热通量平均值更大,CO2吸收能力更强,吸收CO2更多;但在土壤水分胁迫出现时,羊草草原叶面的气孔闭合度急剧增加,大针茅草原的潜热通量、和CO2吸收反而更大,表现出更为耐旱的植被特性。(3)地表导度可以用来解释土壤水分条件对羊草和大针茅草原碳水通量的影响。  相似文献   

8.
根系吸水过程对地表能量平衡和水循环起着重要作用,目前不同的根系吸水过程参数化方案对青藏高原陆面过程模拟的影响尚不明确,探讨相关参数化方案的影响,可以为今后建立陆面过程模式根系参数化方案提供参考。本文利用2010年6月1日至9月30日青藏高原玛曲站的观测资料作为大气强迫资料,驱动BCC_AVIM模式(北京气候中心陆面模式)引入不同的根系吸水过程参数化方案,对玛曲站2010年6月1日至9月30日时段感热通量、潜热通量、土壤温度、土壤含水量等要素进行数值模拟,分析根系吸水过程参数化方案对青藏高原地区陆面过程的影响。模式中有关根系吸水过程的参数化方案主要分为根分布模型和土壤水分对根系有效性函数两类,根分布模型用Jackson方案、Schenk方案替换,土壤水分对根系有效性函数用Li方案、LSM1.0方案、CLM4.5方案替换。对比结果表明:不同的根系吸水过程参数化方案对土壤温度、土壤含水量的模拟影响较小,对感热通量、潜热通量模拟影响较大,尤其对冠层蒸腾量模拟差异显著,相关参数化方案的变动直接影响冠层蒸腾量。两类方案模拟的差异受降水的影响,在多雨期,根分布对比方案与原模式方案模拟的感热、潜热通量间存在较大差异;在少雨期,土壤水分对根系有效性函数对比方案与原模式方案模拟的感热、潜热通量间存在较大差异。  相似文献   

9.
利用2007—2008年辽宁锦州玉米农田生态系统野外观测站资料,基于CoLM模型对玉米根分布在陆-气水热通量模拟中的影响进行研究,结果表明:模型模拟性能随年际气象条件的差异而不同,与2007年相比,2008年生长季内降水偏多,感热和潜热模拟精度明显提高;决定根分布形态的50%和95%根总量土层深度(d50和d95)两个参数中,d50比d95敏感;根分布对土壤湿度的影响在极端干旱条件下很小,在一定土壤湿度范围内随土壤湿度及土层深度的增大而减小;在水汽通量各分量中,植物蒸腾受根分布影响最大,其次是土壤蒸发,而叶片蒸发不受影响;根分布对潜热和感热模拟的影响随土壤湿度增大而减小。  相似文献   

10.
植被冠层截留对地表水分和能量平衡影响的数值模拟   总被引:3,自引:1,他引:2  
尹伊  陈海山 《气象科学》2013,33(2):119-129
利用NCAR_CLM4.0模式,通过有无植被冠层截留的试验对比分析,讨论了植被冠层截留对全球陆面水分和能量平衡产生的潜在影响.结果表明:就全球水分平衡而言,不考虑植被冠层截留时,全球平均土壤总含水量、表面径流和次表面径流增加,蒸散发减少.空间分布特征表明,低纬地区各水分平衡分量全年维持较高的差值分布,并随季节变化沿赤道南北振荡;北半球中高纬高值区有春季扩张、夏季极盛、秋冬季撤退的趋势.冠层截留消失后冠层蒸发的消失是蒸散发减弱的主要原因.对于能量平衡而言,不考虑冠层截留时,全球感热通量增加,冠层感热的增加明显大于地面感热的减少;潜热减少.此外,不同植被类型对不考虑冠层截留后产生的响应存在明显差异.  相似文献   

11.
This study documents the variability of surface sensible and latent heat fluxes in five regions of China (Northwest China, the Tibetan Plateau, Northeast China, North China, and Southeast China) using the ERA-40 reanalysis for the years 1960–2000. The surface sensible and latent heat flux variations are remarkably different in Northwest and Southeast China. The seasonal variation of the surface sensible heat fluxes is largest in Northwest China and smallest in Southeast China. In contrast, the seasonal variation in latent heat flux is largest in Southeast China and smallest in Northwest China. The interdecadal variation of surface sensible and surface latent heat fluxes strongly depends on both the region and season. The trends in surface sensible and latent heat fluxes in all four seasons are mainly caused by variations in both the land–air temperature difference and in the specific humidity. There is also a limited contribution of wind speed in some regions, depending on the season.  相似文献   

12.
柽柳灌丛热量收支特性与蒸散研究   总被引:5,自引:1,他引:5  
Bowen能量平衡法是广泛用于测定各种低矮植物蒸散的常用方法。本文将改进的波文比—能量观测系统用于测定灌木柽柳群落的测定,通过6~9月对感热通量、潜热通量、土壤热通量等的测定,计算出额济纳地区柽柳灌丛(6~9月)的蒸散量为335.31mm;在8月潜热通量占能量支出量的62.85%,感热通量占32.85%,土壤热通量占4.44%。在日变化中,潜热在上午大于感热,下午感热交换大于潜热。  相似文献   

13.
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau. It plays a crucial role in runoff regulation. Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland. This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and therm...  相似文献   

14.
甘肃马衔山区陆面过程与降水的研究   总被引:1,自引:0,他引:1  
采用定西的麦田微气象观测,定西、兰州的辐射观测和马衔山区34个气象、水文和雨量站的气候资料,结合NOAA-16卫星的AVHRR资料以及反演的地表植被盖度和反射率,并用SEBAL算法推导出夏季地表净辐射、感热、潜热、土壤热通量密度的区域分布特征,并分析陆面过程对降水的影响。结果表明:本区降水的空间分布与夏季植被盖度对应最好,相关系数高达0.722,其次是土壤热通量和潜热通量,相关系数分别为-0.65和0.615。这表明森林通过降低地表反射率和表面温度,不仅增加地表净辐射,而且减少其用于感热和土壤热通量的消耗。由于林区地表水分多,从而将接收较多的太阳辐射能主要用于蒸散,增加边界层中的水汽。故林区降水远大于植被稀疏的半干旱黄土梁。  相似文献   

15.
利用欧洲中期天气预报中心第五代再分析数据产品,归类分析了藏东南雅鲁藏布大峡谷地区水汽输送类别.选取大峡谷地区排龙站、墨脱站两个站点2019年涡动相关系统观测数据,分析不同水汽条件下雅鲁藏布大峡谷地区不同位置近地面水热交换通量的日变化特征.结果表明:高原季风期对应大峡谷地区水汽强输送期和温湿期,高原非季风期则相反.墨脱站...  相似文献   

16.
This paper examines the computation of surface-level vertical fluxes of total energy in a moist atmosphere. A flux equation is derived which includes the enthalpy of water, the temperature dependence of the latent heat of condensation and variable moisture composition of air. The complete formulation requires keeping track of liquid water fluxes. However, if this is not possible, then the total energy flux is best approximated by neglecting the enthalpy of all net fluxes of water substance. An important finding is that sensible heat fluxes derived using a moist specific heat at constant pressure are not compatible with usual formulations of latent heat unless the net vapor flux is neglected.  相似文献   

17.
The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces,resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method.We investigated these issues using eddycovariance measurements over an open,homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season.In unstable conditions,the temperature,water vapor,and CO2 followed the flux-variance similarity relation,but did not show in precisely the same way due to different roles(active or passive) of these scalars.Similarity constants of temperature,water vapor and CO2 were found to be 1.12,1.19 and 1.17,respectively.Heat transportation was more efficient than water vapor and CO2.Based on the estimated sensible heat flux,five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes.The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes.This approach is better for representing the averaged relative transport efficiency,and technically easier to apply,compared to other more complex ones.  相似文献   

18.
Observations of surface characteristics, meteorological conditions and energy balance components from Vancouver, B.C. are used to test the validity of the output from three one-dimensional surface energy balance models. The results show that whereas all of the models provide good simulations of net radiation, none can consistently predict the turbulent fluxes of sensible and latent heat using easily available input data. Inability to handle the role of water availability and its impact on evapotranspiration is identified as the principal problem.  相似文献   

19.
城市边界层动量和保守物通量的特征   总被引:2,自引:0,他引:2  
利用2005年1-5月北京325 m气象塔47 m高度的湍流脉动资料(风速、温度、水汽和CO2),对城市边界层冠层内的湍流运动统计特征(相似关系、高阶矩、通量和谱等)进行了分析。其中,谱分析的结果表明,城市冠层内稳定度对湍流谱的影响比较小,而水平风速的影响比较大。因此,速度和温度的相似关系在夜间稳定条件下也成立。但是,由于水汽和CO2还受其他因素的影响,相似关系并不适用。更高阶矩的研究表明它们的陡峭度与偏斜度之间存在平方关系。而水汽和CO2之间也存在差异,它们的通量日变化特征明显不同,CO2通量的日变化更能体现人类活动的影响。同时,感热通量、潜热通量和CO2通量存在季节变化,尤其是潜热通量季节差异很大。  相似文献   

20.
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号