首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴浩  王先华  叶函函  蒋芸  段锋华  吕松 《遥感学报》2019,23(6):1223-1231
大气温室气体监测仪GMI(Greenhouse gases Monitor Instrument)是高分五号(GF-5)卫星载荷之一,主要用于全球温室气体含量监测和碳循环研究。高精度反演是卫星大气CO2遥感的基本需求。地表反射率影响卫星遥感辐射量及辐射传输过程中的地气耦合过程,严重制约着CO2的反演精度,针对GMI开发高精度的大气CO2反演算法,地表反射是一个需要重点考虑的因素。城市是CO2重要的发射源,且城市下垫面存在明显的二向反射特性,加上城市大气条件不良,复杂的地气耦合效应存在这都考验反演算法的准确性和鲁棒性。本文针对北京城市地区,利用2011年—2016年共5年的MODIS(MODerate-resolution Imaging Spectroradiometer)地表二向反射分布函数BRDF(Bidirectional Reflectance Distribution Function)数据,构建了适合利用单次观测数据反演的BRDF模型,并提出一种同时反演地表BRDF参数和大气CO2含量的算法。结果表明在550 nm波长处气溶胶光学厚度AOD(Aerosol Optical Depth)小于0.4时,大部分GMI模拟数据的反演误差控制在0.5%(~2 ppm)内。利用GOSAT (Greenhouse gases Observing SATellite)实测数据的反演结果与修正后的日本国立环境研究所NIES(National Institute for Environmental Studies)反演结果进行对比,其平均误差为1.25 ppm,相关性达到0.85。本算法满足GMI数据在北京城市区域高精度CO2反演的需求,并使得反演高值气溶胶区域数据成为可能,增加了GMI观测数据的利用率。  相似文献   

2.
Differentiation between benthic habitats, particularly seagrass and macroalgae, using satellite data is complicated because of water column effects plus the presence of chlorophyll-a in both seagrass and algae that result in similar spectral patterns. Hyperspectral imager for the coastal ocean data over the Indian River Lagoon, Florida, USA, was used to develop two benthic classification models, SlopeRED and SlopeNIR. Their performance was compared with iterative self-organizing data analysis technique and spectral angle mapping classification methods. The slope models provided greater overall accuracies (63–64%) and were able to distinguish between seagrass and macroalgae substrates more accurately compared to the results obtained using the other classifications methods.  相似文献   

3.
Earth orientation parameters (EOPs) provide a link between the International Celestial Reference Frame (ICRF) and the International Terrestrial Reference Frame (ITRF). Natural geodynamic processes, such as earthquakes, can cause the motion of stations to become discontinuous and/or non-linear, thereby corrupting the EOP estimates if the sites are assumed to move linearly. The VLBI antenna at the Gilcreek Geophysical Observatory has undergone non-linear, post-seismic motion as a result of the Mw=7.9 Denali earthquake in November 2002, yet some VLBI analysts have adopted co-seismic offsets and a linear velocity model to represent the motion of the site after the earthquake. Ignoring the effects of the Denali earthquake leads to error on the order of 300–600 μas for the EOP, while modelling the post-seismic motion of Gilcreek with a linear velocity generates errors of 20–50 μas. Only by modelling the site motion with a non-linear function is the same level of accuracy of EOP estimates maintained. The effect of post-seismic motion on EOP estimates derived from the International VLBI Service IVS-R1 and IVS-R4 networks are not the same, although changes in network geometries and equipment improvements have probably affected the estimates more significantly than the earthquake-induced deformation at Gilcreek.  相似文献   

4.
基于GIS和神经网络模型的场地地震液化势风险评价   总被引:1,自引:0,他引:1  
基于组件式GIS(COMGIS)技术,调用水平成层土地震反应分析程序SHAKE91来实现设定地震下地震动影响场的模拟;调用Matlab神经网络工具箱来完成场地地震液化势评价模型在COMGIS系统中的模块化;利用GIS技术对评价结果进行空间复合,给出场地潜在的地层液化势空间分布图。  相似文献   

5.
ABSTRACT

Urbanization in China is closely connected with ambient particulate matter 2.5 (PM2.5). However, the potential for altering PM2.5 through the urban landscape characteristics is uncertain. In this study, we analyzed the urban PM2.5 pollution situation for 2014–2016 and investigated the impact of landscape factors on urban PM2.5 in China at the city level. All the prefecture-level cities were stratified by urban population size into small (<500,000), medium (500,000–1,000,000), and large (>1,000,000), and the other second-level administrative cities were assigned as ‘other’ cities. The multivariate regression model including both urban landscape factors and social-economic variables explained 70.0%, 32.8%, 19.2%, and 12.4% of the arithmetic mean PM2.5 concentration (AMC-PM2.5) for the other, small, medium, and large cities, respectively. With regard to the configuration of land cover, agricultural activity is a major contributor of PM2.5 pollution, for which the explanatory power ranged from 7.6% (for the large cities) to 64% (for the other cities). In addition, grassland aggregation also has a limited but negative effect on urban PM2.5 pollution, despite the negligible effect on dry deposition. Overall, these findings likely reflect the interaction between urban air quality and urbanization, and will have implications for air quality control strategies.  相似文献   

6.
Satellite-based atmospheric CO2 observations have provided a great opportunity to improve our understanding of the global carbon cycle. However, thermal infrared (TIR)-based satellite observations, which are useful for the investigation of vertical distribution and the transport of CO2, have not yet been studied as much as the column amount products derived from shortwave infrared data. In this study, TIR-based satellite CO2 products – from Atmospheric Infrared Sounder, Tropospheric Emission Spectrometer (TES), and Thermal And Near infrared Sensor for carbon Observation – and carbon tracker mole fraction data were compared with in situ Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL) data for different locations. The TES CO2 product showed the best agreement with CONTRAIL CO2 data resulting in R2 ~ 0.87 and root-mean-square error ~0.9. The vertical distribution of CO2 derived by TES strongly depends on the geophysical characteristics of an area. Two different climate regions (i.e., southeastern Japan and southeastern Australia) were examined in terms of the vertical distribution and transport of CO2. Results show that while vertical distribution of CO2 around southeastern Japan was mainly controlled by horizontal and vertical winds, horizontal wind might be a major factor to control the CO2 transport around southeastern Australia. In addition, the vertical transport of CO2 also varies by region, which is mainly controlled by anthropogenic CO2, and horizontal and omega winds. This study improves our understanding of vertical distribution and the transport of CO2, both of which vary by region, using TIR-based satellite CO2 observations and meteorological variables.  相似文献   

7.
The solar radiation model r.sun is a flexible and efficient tool for the estimation of solar radiation for clear‐sky and overcast atmospheric conditions. In contrast to other models, r.sun considers all relevant input parameters as spatially distributed entities to enable computations for large areas with complex terrain. Conceptually the model is based on equations published in the European Solar Radiation Atlas (ESRA). The r.sun model was applied to estimate the solar potential for photovoltaic systems in Central and Eastern Europe. The overcast radiation was computed from clear‐sky values and a clear‐sky index. The raster map of the clear‐sky index was computed using a multivariate interpolation method to account for terrain effects, with interpolation parameters optimized using a cross‐validation technique. The incorporation of terrain data improved the radiation estimates in terms of the model's predictive error and the spatial pattern of the model outputs. Comparing the results of r.sun with the ESRA database demonstrates that integration of the solar radiation model and the spatial interpolation tools in a GIS can be especially helpful for data at higher resolutions and in regions with a lack of ground measurements.  相似文献   

8.
Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10° and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark’s analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.  相似文献   

9.
Chlorophyll a (Chl-a) has been the most commonly used biomass metric in biological oceanographic processes. Although limited to two-dimensional surfaces, remote-sensing tools have been successfully providing the most recent state of marine phytoplankton biomass to better understand bottom-up processes initiating daily marine material cycles. In this exercise, ocean color products with various time-scales, derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), were used to investigate how their bio-optical properties affect the upper-ocean thermal structure in a global ocean modeling framework. This study used a ¼-degree Hybrid Coordinate Ocean Model forced by hourly atmospheric fluxes from the Climate Forecast System Reanalysis at National Oceanic Atmospheric Administration. Three numerical experiments were prepared by combining two ocean color products – downwelling diffuse attenuation coefficients (KdPAR) and chlorophyll a (Chl-a) – and two shortwave radiant flux algorithms. These three runs are: (1) KparCLM, based on a 13-year long-term climatological KdPAR derived from SeaWiFS; (2) ChlaCLM, based on a 13-year long-term Chl-a derived from SeaWiFS; and (3) ChlaID, which uses the inter-annual time-series of monthly-mean SeaWiFS Chl-a product. The KparCLM experiment uses a Jerlov-like two-band scheme; whereas, both ChlaCLM and ChlaID use a two-band scheme that considers inherent (absorption (a) and backscattering (bb) coefficients) and apparent optical properties (downwelling attenuation coefficient (Kd) and solar zenith angle (θ, varying 0–60°)). It is found that algorithmic differences in optical parameterizations have a bigger impact on the simulated temperatures in the upper-100 m of the eastern equatorial Pacific, NINO3.4 region, than other parts of the ocean. Overall, the KdPAR-based approach estimated relatively low surface temperatures compared to those estimated from the chlorophyll-based method. In specific, this cold bias, pronounced in the upper 20–30 m, is speculated to be due to optical characteristics of the algorithm and KdPAR products, or due to nonlinear hydrodynamical processes involving displacement of mixed-layer depth. Comparisons between each experiment against Global Ocean Data Assimilation System (GODAS; Behringer and Xue 2004) analyses find that KparCLM-based simulations have lower mean differences and variabilities with higher cross-correlation coefficients compared to ChlaCLM- and ChlaID-based experiments.  相似文献   

10.
We have determined approximate average rates of deformation in the Qinghai-Tibet plateau and its margins from the GPS data for last 10 years and the moment tensors from earthquakes between 1900 and 1999.We also determined the strain rate (seismic strain rate) associated with the seismic deformation using 254 Mw≥5.0 earthquakes,and estimated the shortening and extension rates for every block in the area as well.We also estimated the strain rate (geodetic strain rate)by 80 GPS sites' velocity vectors and analyzed characteristic of kinematics by two kinds of strain rates and discussed earthquake potential in the area.As a result,the deformation rates from seismic moment tensors and from GPS velocities are basically agreed with each other.It is feasible to analyze seismic risk by comparing geodetic strain rate with seismic strain rate based on the opinion that strain energy will be released through earthquake.It is concluded that there is no strong earthquake potential (>M7) in the Qinghai-Tibet plateau and its margins,but there is earthquake potential (>M5) in middle Tibet in a few years.  相似文献   

11.
In this paper, we detail the design and the implementation of an open source, server-side web mapping framework for the analysis of health data. The framework forms part of a larger project, the goal of which is to provide an analytical web geographical information system (GIS) that enables health experts to analyse spatial aspects of health data. The aim of the framework is to provide a method for the dynamic and flexible spatial visualisation of health data to facilitate data exploration and analysis. Consequently, a dynamic thematic web mapping technique, an extension to the Open Geospatial Consortium (OGC) web map service standard, was developed. The technique combines a data query, processing technique and styling methodology on the fly to generate a thematic map. The resulting thematic map represents a virtual map layer that enables a user to rapidly visually summarise properties of a data-set. A test web interface was developed to assess the efficacy of the web mapping technique. As the dynamic web mapping method builds on existing OGC web mapping standards, it can be readily integrated with the existing lightweight slippy map web clients and virtual globes.  相似文献   

12.
Sediment Yield Index (SYI) model and results of morphometric analysis have been used to prioritize watersheds and to locate sites for checkdam positioning in Tarafeni watershed in Midnapur district. West Bengal. Various thematic maps such as land use/land cover, slope, drainage, soil etc. were prepared from 1RS ID LISS III digital data, SOI toposheets of 1:50,000 scale and other reference maps. Morphometric parameters such as bifurcation ratio (Rb). drainage density (Dd), texture ratio (T), length of overland flow (Lo), stream frequency (Fu), compactness coefficient (Cc), circularity ratio (Rc), elongation ratio (Er), shape factor (Bs) and form factor (Rf) were computed. Automated demarcation of prioritization of micro-watersheds was done by using GIS overlaying technique by assigning weight factors to all the identified features in each thematic map and ranks were assigned to the morphometric parameters. Five categories of priority viz., very high, high, medium, low and very low, were given to all the watersheds in both the methods. Sixty-two micro-watersheds using SYI method and twenty-three micro-watersheds using morphometric have been prioritized as very high priority. Final priority map was prepared by considering the commonly occurred very high-prioritized micro-watersheds in both SYI model and morphometric analysis. Twenty-four suitable sites were identified for check dam construction in 21 highly prioritized watersheds. It is proved that integrated study of SYI model and morphometric analysis yield good result in prioritization of watersheds.  相似文献   

13.
ABSTRACT

The physical processes associated with the constituents of the troposphere, such as aerosols have an immediate impact on human health. This study employs a novel method to calibrate Aerosol Optical Depth (AOD) obtained from the MODerate resolution Imaging Spectrometer (MODIS – Terra satellite) for estimating surface PM2.5 concentration. The Combined Deep Blue Deep Target daily product from the MODIS AOD data acquired across the Indian Subcontinent was used as input, and the daily averaged PM2.5pollution level data obtained from 33 monitoring stations spread across the country was used for calibration. Mixed Effect Models (MEM) is a linear model to deal with non-independent data from multiple levels or hierarchy using fixed and random effects of dependent parameters. MEM was applied to the dataset obtained for the period from January to August 2017. The MEM considers a fixed and random component, where the random components model the daily variations of the AOD – PM2.5 relationships, site-specific adjustment parameters, temporal (meteorological) variables such as temperature, and spatial variables such as the percentage of agricultural area, forest cover, barren land and road density with the resolution of 10 km × 10 km. Estimation accuracy was improved from an R2 value of 0.66 from our earlier study (when PM2.5 was modeled against only AOD and site-specific parameters) toR2 value of 0.75 upon the inclusion of spatiotemporal (meteorological) variables with increased % within Expected Error from 18% to 35%, reduced Mean Bias Error from 3.22 to 0.11 and reduced RMSE from 29.11 to 20.09. We also found that spline interpolation performed better than IDW and Kriging inefficiently estimating the PM2.5 concentrations wherever there were missing AOD data. The estimated minimum PM2.5 is 93 ± 25μg/m3 which itself is in the upper limit of the hazardous level while the maximum is estimated as 170 ± 70μg/m3. The study has thus made it possible to determine the daily spatial variations of PM2.5 concentrations across the Indian subcontinent utilizing satellite-based AOD data.  相似文献   

14.
A robust method for spatial prediction of landslide hazard in roaded and roadless areas of forest is described. The method is based on assigning digital terrain attributes into continuous landform classes. The continuous landform classification is achieved by applying a fuzzy k-means approach to a watershed scale area before the classification is extrapolated to a broader region. The extrapolated fuzzy landform classes and datasets of road-related and non road-related landslides are then combined in a geographic information system (GIS) for the exploration of predictive correlations and model development. In particular, a Bayesian probabilistic modeling approach is illustrated using a case study of the Clearwater National Forest (CNF) in central Idaho, which experienced significant and widespread landslide events in recent years. The computed landslide hazard potential is presented on probabilistic maps for roaded and roadless areas. The maps can be used as a decision support tool in forest planning involving the maintenance, obliteration or development of new forest roads in steep mountainous terrain.  相似文献   

15.
Soil erosion modeling using MMF model -A remote sensing and GIS perspective   总被引:1,自引:0,他引:1  
Hardly any part of the world has remained unchanged since the arrival of the speciesHomo sapiens including the mountain ecosystems. Himalayan physiographic unit of India in due course has become populated and is tolerating all kinds of human interventions. Soil erosion in this region has been identified as a major problem due to both natural and anthropogenic factors. Remote sensing and Geographical Information system (GIS) techniques hold great promises in the assessment and conservation of natural resources including the surface soil. The major objective of the present study was to apply a process based model to quantify soil erosion and to prioritize the sub-watershed on this basis. The sub-watershed located at Jakhan rao area of Western Dun in lower Himalayan belt was taken as the test site for the study at 1: 50,000 scale. Deforestation, unscientific agricultural practices, terrace farming, cattle grazing and land degradation in the sub-watershed are some of the anthropogenic factors causing soil erosion in the area. Here, MMF model was used for estimation of soil erosion by incorporating layers derived from both remote sensing and ancillary data. IRS 1C LISS III satellite data was used for the preparation of land use map that was used to derive RD map, BD map and K map. Digital Elevation Model (DEM) provided slope map, an intermediate layer used in equation 6 to generate G map, and soil map provided MS map, BD map and K map. The above intermediate layers generated were then integrated in GIS domain to estimate the amount of soil erosion in the sub-watershed area. Results show high values 4572.333 kg/m2 for G map, which depicted transport capacity of overland flow. Comparatively lower values 13.15, and 7.98 kg/m2were observed for F map, which depicted soil detachment by raindrop impact. The subtracted image of the aforesaid layers produced the real picture, where in the highest value 3.770 kg/m2 was found in the midland region of the site. The crossed erosion map was then classified into different erosion classes for sub-watershed area. This study illustrates the applications of remote sensing and GIS techniques for soil erosion modeling.  相似文献   

16.
The current paper presents landslide hazard analysis around the Cameron area, Malaysia, using advanced artificial neural networks with the help of Geographic Information System (GIS) and remote sensing techniques. Landslide locations were determined in the study area by interpretation of aerial photographs and from field investigations. Topographical and geological data as well as satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten factors were selected for landslide hazard including: 1) factors related to topography as slope, aspect, and curvature; 2) factors related to geology as lithology and distance from lineament; 3) factors related to drainage as distance from drainage; and 4) factors extracted from TM satellite images as land cover and the vegetation index value. An advanced artificial neural network model has been used to analyze these factors in order to establish the landslide hazard map. The back-propagation training method has been used for the selection of the five different random training sites in order to calculate the factor’s weight and then the landslide hazard indices were computed for each of the five hazard maps. Finally, the landslide hazard maps (five cases) were prepared using GIS tools. Results of the landslides hazard maps have been verified using landslide test locations that were not used during the training phase of the neural network. Our findings of verification results show an accuracy of 69%, 75%, 70%, 83% and 86% for training sites 1, 2, 3, 4 and 5 respectively. GIS data was used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool for landslide hazard analysis. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.  相似文献   

17.
The current paper presents landslide hazard analysis around the Cameron area, Malaysia, using advanced artificial neural networks with the help of Geographic Information System (GIS) and remote sensing techniques. Landslide locations were determined in the study area by interpretation of aerial photographs and from field investigations. Topographical and geological data as well as satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten factors were selected for landslide hazard including: 1) factors related to topography as slope, aspect, and curvature; 2) factors related to geology as lithology and distance from lineament; 3) factors related to drainage as distance from drainage; and 4) factors extracted from TM satellite images as land cover and the vegetation index value. An advanced artificial neural network model has been used to analyze these factors in order to establish the landslide hazard map. The back-propagation training method has been used for the selection of the five different random training sites in order to calculate the factor’s weight and then the landslide hazard indices were computed for each of the five hazard maps. Finally, the landslide hazard maps (five cases) were prepared using GIS tools. Results of the landslides hazard maps have been verified using landslide test locations that were not used during the training phase of the neural network. Our findings of verification results show an accuracy of 69%, 75%, 70%, 83% and 86% for training sites 1, 2, 3, 4 and 5 respectively. GIS data was used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool for landslide hazard analysis. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.  相似文献   

18.
本文以L波段的ALOS PALSAR-2数据为基础,采用长时间序列InSAR技术对2014年9月至2019年8月的青藏高原区域进行动态监测,结合偏移量追踪法获取部分冰川在尼泊尔地震前后分别在距离向、方位向和水平方向的冰川流速分布结果。结果表明:在监测时段内,研究区普遍存在沉降现象,仅在个别年份出现小幅度的抬升,研究区最大年平均形变速率可达-203.1 mm/a,认为此次地震对研究区的时序观测结果的波动有特殊影响;在研究时期内部分冰川流速在地震后的相当长的一段时间内大幅度增加,最大速度可达2.645 m/d,认为地震是导致冰川流速急剧增加的原因之一。  相似文献   

19.
在同步协同GIS中,GIS图形显示的同步是一个比较重要的问题。本文针对GIS图形操作的特点,分析和研究用XML对GIS图形操作进行描述;研究GIS图形操作封装的基本原理,实现GIS图形操作的封装;根据GIS图形操作封装的结构研究GIS图形操作解析方法,实现GIS图形操作的解析。  相似文献   

20.
Five techniques were used to map nitrogen dioxide (NO2) concentrations in the United Kingdom. The methods used to predict from point data, collected as part of the UK NO2 diffusion tube network, were local linear regression (LR), inverse distance weighting (IDW), ordinary kriging (OK), simple kriging with a locally varying mean (SKlm) and kriging with an external drift (KED). These techniques may be divided into two groups: (i) those that use only a single variable in the prediction process (IDW, OK) and (ii) those that make use of additional variables as a part of prediction (LR, SKlm and KED). Nitrous oxides emission data were used as secondary data with LR, SKlm and KED. It was concluded that SKlm provided the most accurate predictions based on the summary statistics of prediction errors from cross-validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号