首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical procedure to obtain the response of soil–structure interaction problems, time domain is described. The procedure makes use of large domain for descritization along with co-ordinate transformation using Lanczos vectors. The responses are obtained in time domain using an adaptive direct integration method. The scheme has the ability to estimate errors due to temporal discretization as well as co-ordinate transformation. The procedure has been applied to half-space problems and non-convex domains for validation of the scheme, and the scheme obeys causality condition in both the situations. The present method has all the advantages of time domain scheme which is local both in space and time with small computational effort. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Soil–structure interaction problems are commonly encountered in geotechnical practice and remarkably characterized with significant material stiffness contrast. When solving the soil–structure interaction problems, the employed Krylov subspace iterative method may converge slowly or even fail, indicating that the adopted preconditioning method may not suit for such problems. The inexact block diagonal preconditioners proposed recently have been shown effective for the soil–structure interaction problems; however, they haven't been exploited to full capabilities. By using the same partition strategy according to the structure elements and soil elements, the partitioned block symmetric successive over‐relaxation preconditioners or partitioned block constraint preconditioners are proposed. Based on two pile‐group foundation problems and a tunnel problem, the proposed preconditioners are evaluated and compared with the available preconditioners for the consolidation analysis and the drained analysis, respectively. In spite of one additional solve associated with the structure block and multiplications with off‐diagonal blocks in the preconditioning step, numerical results reveal that the proposed preconditioners obviously possess better performance than the recently developed inexact block preconditioners. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This study is conducted with a numerical method to investigate the seismic behaviour among certain soils, single piles, and a structure. A series of numerical simulations of the seismic behaviour of a single‐pile foundation constructed in a two‐layer ground is carried out. Various sandy soils, namely, dense sand, medium dense sand, reclaimed soil, and loose sand, are employed for the upper layer, while one type of clayey soil is used for the lower layer. The results reveal that when a structure is built in a non‐liquefiable ground, an amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated at the pile heads. When a structure is built in a liquefiable ground, a de‐amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated firstly at the pile heads and then in the lower segment at the boundary between the soil layers when liquefaction takes place. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
An efficient finite–discrete element method applicable for the analysis of quasi‐static nonlinear soil–structure interaction problems involving large deformations in three‐dimensional space was presented in this paper. The present method differs from previous approaches in that the use of very fine mesh and small time steps was not needed to stabilize the calculation. The domain involving the large displacement was modeled using discrete elements, whereas the rest of the domain was modeled using finite elements. Forces acting on the discrete and finite elements were related by introducing interface elements at the boundary of the two domains. To improve the stability of the developed method, we used explicit time integration with different damping schemes applied to each domain to relax the system and to reach stability condition. With appropriate damping schemes, a relatively coarse finite element mesh can be used, resulting in significant savings in the computation time. The proposed algorithm was validated using three different benchmark problems, and the numerical results were compared with existing analytical and numerical solutions. The algorithm performance in solving practical soil–structure interaction problems was also investigated by simulating a large‐scale soft ground tunneling problem involving soil loss near an existing lining. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Foundation settlements and soil–structure interaction are important problems to structural and geotechnical engineers. This study introduces a novel elastoplastic three‐degree‐of‐freedom medium which models foundations settlements under combined loadings. A soil–structure interaction problem can then be solved by replacing the soil mass with this three‐degree‐of‐freedom elastoplastic medium, thus reducing significantly the size of the problem. The model was developed by extending the classical plasticity concepts to the force‐deformation level. Its ability to predict foundation deformations was evaluated using finite element solutions of a typical shallow foundation problem and was found reasonably accurate while producing significant time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Simulation of frictional contact between soils and rigid or deformable structure in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two algorithms are implemented into the SPH code to describe contact behavior, where the contact forces are calculated using the law of conservation of momentum based on ideal plastic collision or using the criteria of partial penetrating. In both algorithms, the problem of boundary deficiency inherited from SPH is properly handled so that the particles located at contact boundary can have precise acceleration, which is critical for contact detection. And the movement and rotation of the rigid structure are taken into account so that it is easy to simulate the process of pile driving or movement of a retaining wall in geotechnical engineering analysis. Furthermore, the capability of modeling deformability of a structure during frictional contact simulations broadens the fields of SPH application. In contrast to previous work dealing with contact in SPH, which usually use particle‐to‐particle contact or ignoring sliding between particles and solid structure, the method proposed here is more efficient and accurate, and it is suitable to simulate interaction between soft materials and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests are carried out to verify the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions or results from finite element method analysis. Good agreement obtained from these comparisons suggests that the proposed algorithms are robust and can be applied to extend the capability of SPH in solving geotechnical problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A novel three‐dimensional particle‐based technique utilizing the discrete element method is proposed to analyze the seismic response of soil‐foundation‐structure systems. The proposed approach is employed to investigate the response of a single‐degree‐of‐freedom structure on a square spread footing founded on a dry granular deposit. The soil is idealized as a collection of spherical particles using discrete element method. The spread footing is modeled as a rigid block composed of clumped particles, and its motion is described by the resultant forces and moments acting upon it. The structure is modeled as a column made of particles that are either clumped to idealize a rigid structure or bonded to simulate a flexible structure of prescribed stiffness. Analysis is done in a fully coupled scheme in time domain while taking into account the effects of soil nonlinear behavior, the possible separation between foundation base and soil caused by rocking, the possible sliding of the footing, and the dynamic soil‐foundation interaction as well as the dynamic characteristics of the superstructure. High fidelity computational simulations comprising about half a million particles were conducted to examine the ability of the proposed technique to model the response of soil‐foundation‐structure systems. The computational approach is able to capture essential dynamic response patterns. The cyclic moment–rotation relationships at the base center point of the footing showed degradation of rotational stiffness by increasing the level of strain. Permanent deformations under the foundation continued to accumulate with the increase in number of loading cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an embedded beam formulation for discretization independent finite element (FE) analyses of interactions between pile foundations or rock anchors and the surrounding soil in geotechnical and tunneling engineering. Piles are represented by means of finite beam elements embedded within FEs for the soil represented by 3D solid elements. The proposed formulation allows consideration of piles and pile groups with arbitrary orientation independently from the FE discretization of the surrounding soil. The interface behavior between piles and the surrounding soil is represented numerically by means of a contact formulation considering skin friction as well as pile tip resistance. The pile–soil interaction along the pile skin is considered by means of a 3D frictional point‐to‐point contact formulation using the integration points of the beam elements and reference points arbitrarily located within the solid elements as control points. The ability of the proposed embedded pile model to represent groups of piles objected to combined axial and shear loading and their interactions with the surrounding soil is demonstrated by selected benchmark examples. The pile model is applied to the numerical simulation of shield driven tunnel construction in the vicinity of an existing building resting upon pile foundation to demonstrate the performance of the proposed model in complex simulation environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
陈灯红  杜成斌 《岩土力学》2014,35(4):1164-1172
结构-地基动力相互作用是结构地震响应分析及安全评估的一个非常重要课题。基于比例边界有限元法,提出了一种新颖的结构-地基动力相互作用的时域模型,即采用比例边界有限元子域模拟近场有限域部分,采用高阶透射边界模拟远场无限域部分。通过采用连分式展开和引入辅助变量,有限域的动力方程采用高阶的静力刚度矩阵和质量矩阵表示。高阶透射边界精确满足无限远处的辐射边界条件,具有全局精确、时间局部和收敛速度快等优点。它是基于改进的连分式法求解无限域动力刚度矩阵而建立的,在时域里表示为一阶常微分方程组。通过联立有限域和无限域的运动方程,建立了结构-地基相互作用的标准动力学方程,采用Newmark法可直接求解。3个算例结果表明,该算法在时域里比黏弹性边界更精确、有效。  相似文献   

12.
This paper deals with the moisture exchanges occurring between soils and the surrounding atmosphere. Convective drying tests are performed on Awans silts at different drying temperatures and air relative humidities in order to reproduce the natural drying conditions. The experiments improve the understanding of the vapour transfers kinetics between the soil samples and the atmosphere. The experimental results are analysed assuming that the transfers take place in a boundary layer existing at the surface of the porous medium. The influence of the thermal conditions on the evaporation is also taken into account. In our model, coupled vapour and energy exchanges are controlled by mass and heat transfer coefficients characterizing the boundary layer. These coefficients are determined from the drying experiments. The modelling of the drying tests in non‐isothermal conditions is performed in order to validate the formulation of the vapour and heat exchanges. The numerical results present a good agreement with the kinetic of the materials desaturation determined during the tests. The analysis of the moisture transport mechanisms into the sample and at the boundary shows that at the beginning of the test, the drying is first achieved by the transport of moisture in its liquid form and its evaporation at the sample outer boundary in contact with the atmosphere. In a second step, vapour diffusion becomes predominant into the sample and it corresponds to the most important decrease of relative humidity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Extreme waves caused by tsunamis and storm surges can lead to soil failures in the near‐shore region, which may have severe impact on coastal environments and communities. Multiphase flows in deformable porous media involve several coupled processes and multiple time scales, which are challenging for numerical simulations. The objective of this study is to investigate the roles of the various processes and their interactions in multiphase flows in unsaturated soils under external wave loading, via theoretical time‐scale analysis and numerical simulations. A coupled geomechanics–multiphase flow model based on conservation laws is used. Theoretical analysis based on coupled and decoupled models demonstrates that transient and steady‐state responses are governed by pore pressure diffusion and saturation front propagation, respectively, and that the two processes are essentially decoupled. Numerical simulations suggest that the compressibility of the pore fluids and the deformation of the soil skeleton are important when the transient responses of the media are of concern, while the steady‐state responses are not sensitive to these factors. The responses obtained from the fully coupled numerical simulations are explained by a simplified time‐scale analysis based on coupled and decoupled models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a superposition method expanded for computing impedance functions (IFs) of inclined‐pile groups. Closed‐form solutions for obtaining horizontal, vertical, and rocking IFs, estimated by using pile‐to‐pile interaction factors, are proposed. IFs of solitary inclined piles, crossed IFs, and explicit incorporation of compatibility conditions for pile‐head movements are also appropriately taken into consideration. All of these factors should be known in advance and will be computed and shown for the most relevant cases. The accuracy of the proposed closed‐form solutions is verified for 2 × 2 and 3 × 3 square inclined‐pile groups embedded in an isotropic viscoelastic homogeneous half‐space soil medium, with hysteretic damping. The pile‐to‐pile interaction factors are computed by means of a three‐dimensional time‐harmonic boundary elements–finite elements coupling formulation. The results indicate that the IFs obtained from the proposed method are in good agreement with those obtained from the coupling formulation. Furthermore, crossed vertical‐rocking IFs of solitary piles need to be appropriately considered for obtaining rocking IFs when the number of piles is small. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, forced rocking vibration of a rigid circular disc placed in a transversely isotropic full‐space, where the axis of material symmetry of the full‐space is normal to the surface of the plate, is analytically investigated. Because of using the Fourier series and Hankel integral transforms, the mixed boundary‐value problem is transformed into two separate pairs of integral equations called dual integral equations. The dual integral equations involved in this paper are reduced to Fredholm integral equations of the second kind. With the aid of contour integration, the governing integral equation is numerically evaluated in the general dynamic case. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly determined, and it is shown that the pressure in between the plate and the full‐space and the compliance function reduced for isotropic half‐space are identical to the previously published solutions. The dynamic contact pressure in between the disc and the space and also the related impedance function are numerically evaluated in general dynamic case and illustrated. It is shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. To show the effect of material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The response of laterally loaded pile foundations may be significantly important in the design of structures for such loads. A static horizontal pile load test is able to provide a load–deflection curve for a single free‐head pile, which significantly differs from that of a free‐ or fixed‐head pile group, depending on the particular group configuration. The aim of this paper is to evaluate the influence of the interaction between the piles of a group fixed in a rigid pile cap on both the lateral load capacity and the stiffness of the group. For this purpose, a parametric three‐dimensional non‐linear numerical analysis was carried out for different arrangements of pile groups. The response of the pile groups is compared to that of the single pile. The influence of the number of piles, the spacing and the deflection level to the group response is discussed. Furthermore, the contribution of the piles constituting the group to the total group resistance is examined. Finally, a relationship is proposed allowing a reasonable prediction of the response of fixed‐head pile groups at least for similar soil profile conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half‐space. On assuming a depth‐independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small‐scale geophysical applications, the model is used to investigate the near‐field effects of ground‐loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform‐pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non‐intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of tunneling on surrounding environments, especially on existing buried pipelines is a problem that engineers designing and practicing in urban geotechnical environments encounter more frequently than in the past. However, previous studies are usually based on the assumption that the soil is homogeneous. How to reflect soil stratification is the main focus for the problem of tunneling in multi‐layered soils. A displacement controlled coupling numerical method is presented for the displacement analysis of tunnel excavation below existing pipelines in multi‐layered soils. On the basis of the layered soil model, to consider the soil nonhomogeneous characteristic, the finite element method and boundary element method are coupled to simulate the deformation of existing pipelines induced by tunneling. The solutions indicate that good agreements are obtained between the proposed coupling numerical method and the commercial software. The accuracy of the proposed numerical method is better than the two stages method based on the existing closed‐form solutions. Moreover, the results discussed in this paper show that the error obtained by the previous method of weighted average on the basis of homogeneous half space converted from layered soils is not negligible for the obvious difference of elastic parameters among successive layers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Dynamic two‐phase interaction of soil can be modelled by a displacement‐based, two‐phase formulation. The finite element method together with a semi‐implicit Euler–Cromer time‐stepping scheme renders a discrete equation that can be solved by recursion. By experience, it is found that the CFL stability condition for undrained wave propagation is not sufficient for the considered two‐phase formulation to be numerically stable at low values of permeability. Because the stability analysis of the two‐phase formulation is onerous, an analysis is performed on a simplified two‐phase formulation that is derived by assuming an incompressible pore fluid. The deformation of saturated porous media is now captured in a single, second‐order partial differential equation, where the energy dissipation associated with the flow of the fluid relative to the soil skeleton is represented by a damping term. The paper focuses on the different options to discretize the damping term and its effect on the stability criterion. Based on the eigenvalue analyses of a single element, it is observed that in addition to the CFL stability condition, the influence of the permeability must be included. This paper introduces a permeability‐dependent stability criterion. The findings are illustrated and validated with an example for the dynamic response of a sand deposit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号