首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an embedded beam formulation for discretization independent finite element (FE) analyses of interactions between pile foundations or rock anchors and the surrounding soil in geotechnical and tunneling engineering. Piles are represented by means of finite beam elements embedded within FEs for the soil represented by 3D solid elements. The proposed formulation allows consideration of piles and pile groups with arbitrary orientation independently from the FE discretization of the surrounding soil. The interface behavior between piles and the surrounding soil is represented numerically by means of a contact formulation considering skin friction as well as pile tip resistance. The pile–soil interaction along the pile skin is considered by means of a 3D frictional point‐to‐point contact formulation using the integration points of the beam elements and reference points arbitrarily located within the solid elements as control points. The ability of the proposed embedded pile model to represent groups of piles objected to combined axial and shear loading and their interactions with the surrounding soil is demonstrated by selected benchmark examples. The pile model is applied to the numerical simulation of shield driven tunnel construction in the vicinity of an existing building resting upon pile foundation to demonstrate the performance of the proposed model in complex simulation environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three‐dimensional shear strength reduction finite element method (SSRFEM), where soil–anchor interactions were simulated by three‐dimensional zero‐thickness elasto‐plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil–grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil–grouted body interfaces on the safety factor of slopes stabilized with anchors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Simulation of frictional contact between soils and rigid or deformable structure in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two algorithms are implemented into the SPH code to describe contact behavior, where the contact forces are calculated using the law of conservation of momentum based on ideal plastic collision or using the criteria of partial penetrating. In both algorithms, the problem of boundary deficiency inherited from SPH is properly handled so that the particles located at contact boundary can have precise acceleration, which is critical for contact detection. And the movement and rotation of the rigid structure are taken into account so that it is easy to simulate the process of pile driving or movement of a retaining wall in geotechnical engineering analysis. Furthermore, the capability of modeling deformability of a structure during frictional contact simulations broadens the fields of SPH application. In contrast to previous work dealing with contact in SPH, which usually use particle‐to‐particle contact or ignoring sliding between particles and solid structure, the method proposed here is more efficient and accurate, and it is suitable to simulate interaction between soft materials and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests are carried out to verify the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions or results from finite element method analysis. Good agreement obtained from these comparisons suggests that the proposed algorithms are robust and can be applied to extend the capability of SPH in solving geotechnical problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Soil–shallow foundation interaction has been theoretically analysed within the framework of thermomechanics. The design of a global interaction model has been achieved with an original treatment of the Clausius–Duhem inequality. The role of the gravity volume forces is emphasized. The paper is focused on a strip footing based on dense sand and subjected to time‐independent plastic processes. The theoretical approach has confirmed that an associated global flow rule cannot be expected to hold true. The analysis of the sources of dissipation has led to the development of a soil–footing interface model and a complete interaction model accounting for the interface constraints and the intrinsic frictional properties of the soil. Finally, the abilities of the complete model are checked by comparisons with experimental results found in the literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper presents a numerical formulation of a three dimensional embedded beam element for the modeling of piles, which incorporates an explicit interaction surface between soil and pile. The formulation is herein implemented for lateral loading of piles but is able to represent soil–pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The model assumes perfect adherence between beam and soil along the interaction surface. The paper presents a comparison of the results obtained by means of the present formulation and by means of a previously formulated embedded pile element without interaction surface, as well as reference semi‐analytical solutions and a fully 3D finite element (FE) model. It is seen that the proposed embedded element provides a better convergence behavior than a previously formulated embedded element and is able to reproduce key features of a full 3D FE model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay–steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay‐steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half‐spaces is presented. The analysis is performed in the frequency domain and the steady‐state structure response is obtained. The method is based on a non‐singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half‐space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil–structure interface tractions and for the displacement field throughout the half‐space are also shown. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A cavity expansion procedure for the simulation of pile driving is presented and assessed in this paper. The analysis uses a non-linear finite-element model and the penetration of the pile into the soil is simulated by a radial opening of the soil around the pile. The case of a pile advanced by expansion will be compared to a similar pile subjected to computational driving (referred to, respectively, as ‘expanded’ and ‘driven’ piles for convenience). The state of stress and deformation, and the evolution of pore-water pressure in the soil will be monitored for the expanded and driven piles. Further computational driving will be applied to both cases and the pile response and soil resistance will be compared. The computational cost of advancing the pile by expansion will finally be investigated. Copyright © John Wiley & Sons, Ltd.  相似文献   

10.
An analytical procedure to obtain the response of soil–structure interaction problems, time domain is described. The procedure makes use of large domain for descritization along with co-ordinate transformation using Lanczos vectors. The responses are obtained in time domain using an adaptive direct integration method. The scheme has the ability to estimate errors due to temporal discretization as well as co-ordinate transformation. The procedure has been applied to half-space problems and non-convex domains for validation of the scheme, and the scheme obeys causality condition in both the situations. The present method has all the advantages of time domain scheme which is local both in space and time with small computational effort. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
If utilized, the energy dissipative capability of seismically loaded shallow foundations due to inelastic behavior can result in more economic design, provided the consequences, such as excessive deformations are accounted for. In this article, a Beam‐on‐Nonlinear‐Winkler‐Foundation (BNWF) model is used to assess the performance of shearwall‐foundation systems with different attributes, when subjected to ground motions of varied hazard levels. The numerical study indicates that the force and drift demands to the shearwall reduce significantly, when nonlinear foundation behavior is realized, while permanent settlement is well below the permissible limit. These results support the concept of shallow foundation capacity mobilization in future design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Analysis of shield tunnel   总被引:1,自引:0,他引:1  
This paper proposes a two‐dimensional finite element model for the analysis of shield tunnels by taking into account the construction process which is divided into four stages. The soil is assumed to behave as an elasto‐plastic medium whereas the shield is simulated by beam–joint discontinuous model in which curved beam elements and joint elements are used to model the segments and joints, respectively. As grout is usually injected to fill the gap between the lining and the soil, the property parameters of the grout are chosen in such a way that they can reflect the state of the grout at each stage. Furthermore, the contact condition between the soil and lining will change with the construction stage, and therefore, different stress‐releasing coefficients are used to account for the changes. To assess the accuracy that can be attained by the method in solving practical problems, the shield tunnelling in the No. 7 Subway Line Project in Osaka, Japan, is used as a case history for our study. The numerical results are compared with those measured in the field. The results presented in the paper show that the proposed numerical procedure can be used to effectively estimate the deformation, stresses and moments experienced by the surrounding soils and the concrete lining segments. The analysis and method presented in this paper can be considered to be useful for other subway construction projects involving shield tunnelling in soft soils. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
现浇混凝土薄壁管桩内摩阻力的数值分析   总被引:2,自引:0,他引:2  
刘汉龙  费康  周云东  高玉峰 《岩土力学》2004,25(Z2):211-216
现浇混凝土薄壁管桩(简称PCC桩)技术是河海大学自主开发研制的用于地基加固处理的新技术,它是一种适合于软土地区的新型高效优质桩型.在全面介绍了PCC桩非线性有限元分析模型的建立过程后,对PCC桩的内摩阻力进行了计算分析.分析结果表明,土塞底部的水平应力在荷载作用过程中有较大的提高,相应位置的内摩阻力达到极限值,内摩阻力沿土塞呈指数曲线分布.同时,对内摩阻力分布规律的主要因素影响也进行了分析,给出了相应的简化计算公式.  相似文献   

14.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Different phenomena such as soil consolidation, erosion, and scour beneath an embedded footing supported on piles may lead to loss of contact between soil and the pile cap underside. The importance of this separation on the dynamic stiffness and damping of the foundation is assessed in this work. To this end, a numerical parametric analysis in the frequency domain is performed using a rigorous three‐dimensional elastodynamic boundary element–finite element coupling scheme. Dimensionless plots relating dynamic stiffness functions computed with and without separation effects are presented for different pile–soil configurations. Vertical, horizontal and rocking modes of oscillation are analyzed for a wide range of dimensionless frequencies. It is shown that the importance of separation is negligible for frequencies below those for which dynamic pile group effects start to become apparent. Redistribution of stiffness contributions between piles and footing is also addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Although numerous numerical models have been proposed for simulating the coupled hydromechanical behaviors in unsaturated soils, few studies satisfactorily reproduced the soil–water–air three‐phase coupling processes. Particularly, the impacts of deformation dependence of water retention curve, bonding stress, and gas flow on the coupled processes were less examined within a coupled soil–water–air model. Based on our newly developed constitutive models (Hu et al., 2013, 2014, 2015) in which the soil–water–air couplings have been appropriately captured, this study develops a computer code named F2Mus3D to investigate the coupled processes with a focus on the above impacts. In the numerical implementation, the generalized‐α time integration scheme was adopted to solve the equations, and a return‐mapping implicit stress integration scheme was used to update the state variables. The numerical model was verified by two well‐designed laboratory tests and was applied for modeling the coupled elastoplastic deformation and two‐phase fluid flow processes in a homogenous soil slope induced by rainfall infiltration. The simulation results demonstrated that the numerical model well reproduces the initiation of a sheared zone at the toe of the slope and its propagation toward the crest as the rain infiltration proceeds, which manifests a typical mechanism for rainfall‐induced shallow landslides. The simulated plastic strain and deformation would be remarkably underestimated when the bonding stress and/or the deformation‐dependent nature of hydraulic properties are ignored in the coupled model. But on the contrary, the negligence of gas flow in the slope soil results in an overestimation of the rainfall‐induced deformation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
An efficient finite–discrete element method applicable for the analysis of quasi‐static nonlinear soil–structure interaction problems involving large deformations in three‐dimensional space was presented in this paper. The present method differs from previous approaches in that the use of very fine mesh and small time steps was not needed to stabilize the calculation. The domain involving the large displacement was modeled using discrete elements, whereas the rest of the domain was modeled using finite elements. Forces acting on the discrete and finite elements were related by introducing interface elements at the boundary of the two domains. To improve the stability of the developed method, we used explicit time integration with different damping schemes applied to each domain to relax the system and to reach stability condition. With appropriate damping schemes, a relatively coarse finite element mesh can be used, resulting in significant savings in the computation time. The proposed algorithm was validated using three different benchmark problems, and the numerical results were compared with existing analytical and numerical solutions. The algorithm performance in solving practical soil–structure interaction problems was also investigated by simulating a large‐scale soft ground tunneling problem involving soil loss near an existing lining. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study is conducted with a numerical method to investigate the seismic behaviour among certain soils, single piles, and a structure. A series of numerical simulations of the seismic behaviour of a single‐pile foundation constructed in a two‐layer ground is carried out. Various sandy soils, namely, dense sand, medium dense sand, reclaimed soil, and loose sand, are employed for the upper layer, while one type of clayey soil is used for the lower layer. The results reveal that when a structure is built in a non‐liquefiable ground, an amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated at the pile heads. When a structure is built in a liquefiable ground, a de‐amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated firstly at the pile heads and then in the lower segment at the boundary between the soil layers when liquefaction takes place. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the load‐bearing capacity of a perfectly smooth retaining wall laterally supported at both ends assuming that the wall fails by the development of three plastic hinges. The study considers the case of a cohesionless elastic–perfectly plastic backfill with a Mohr–Coulomb yield criterion and an associative flow rule in drained conditions. A kinematically admissible soil–structure failure mechanism is proposed and compared with the conventional solutions and with results from a numerical finite element modelling. The study shows that the proposed solution and the numerical solution are in good agreement. These solutions are found to be much more favourable for the wall than the conventional solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号