首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote sensing is useful for water quality assessments but current remote sensing applications favour parameters that are easy to detect such as chlorophyll-a. An assessment of the utility of Landsat 8 for detecting nutrients was conducted in Mazvikadei reservoir in Zimbabwe. The main objective was to determine whether nutrients often overlooked by remote sensing and yet are the main determinants of water quality can be remotely sensed. Sampling targeted ammonia, nitrates and reactive phosphorus from May to October 2015. In situ nutrient concentrations were regressed against reflectance derived from Landsat 8 imagery. Strong negative relationships were found between ammonia and the near-infrared band in July (R2 = 0.80, p < 0.05) as well as between nitrates and the blue band (R2 = 0.67, p < 0.05) in June. Overall, the results suggest that the cool dry season is the optimum time to use Landsat 8 for monitoring nutrients in tropical lakes.  相似文献   

2.
Total evaporation is of importance in assessing and managing long-term water use, especially in water-limited environments. Therefore, there is need to account for water utilisation by different land uses for well-informed water resources management and future planning. This study investigated the feasibility of using multispectral Landsat 8 and moderate resolution imaging spectroradiometer (MODIS) remote sensing data to estimate total evaporation within the uMngeni catchment in South Africa, using surface energy balance system. The results indicated that Landsat 8 at 30 m resolution has a better spatial representation of total evaporation, when compared to the 1000 m MODIS. Specifically, Landsat 8 yielded significantly different mean total evaporation estimates for all land cover types (one-way ANOVA; F4.964?=?87.011, p < 0.05), whereas MODIS failed to differentiate (one-way ANOVA; F2.853?=?0.125, p = 0.998) mean total evaporation estimates for the different land cover types across the catchment. The findings of this study underscore the utility of the Landsat 8 spatial resolution and land cover characteristics in deriving accurate and reliable spatial variations of total evaporation at a catchment scale.  相似文献   

3.
Water quality problems continue on a global scale and this creates the need for regular monitoring using cheaper technologies to inform management. The objective of this study was to test for significant relationships between the field-measured and Landsat 8 OLI sensor-retrieved water quality parameters. The study was carried out in two reservoirs with contrasting trophic states in Zimbabwe. Results show that the Blue/Red ratio had strong predictive relationships with Secchi disc transparency (R2 > 0.70) and turbidity (R2 ≥ 0.65). The Near-infrared/Red ratio was a strong predictor of chlorophyll-a in Mazvikadei (R2 > 0.84) whereas in Lake Chivero, which is more polluted, the red band was the most useful predictor (R2 = 0.69). Overall, our work demonstrates the utility of using Landsat 8 band ratios for remote assessment of water quality in African reservoirs as a value-addition to the traditional field-based methods, which are expensive resulting in data scarcity.  相似文献   

4.
In this paper we report chlorophyll measurements made during an ocean colour validation cruise in April 2011 of the research vessel, Sagar Paschimi in the coastal waters of Northern Bay of Bengal. The chlorophyll-a concentration in these waters range from 0.2 to 4.0 mg/m3. Chlorophyll-a concentration from OCM-2 was estimated using the global ocean colour algorithms namely, OC2, OC3, OC4 and Chl-a algorithms respectively. OCM data was processed using the global SeaWiFS Data Analysis System (SeaDAS) in which all the above mentioned algorithms are embedded for estimating the chlorophyll-a concentration. A comparative study was made between and in-situ and satellite derived chlorophyll-a concentration. Although the matchups between in-situ and satellite data from OCM-2 were sparse, it indicates that direct application of the standard SeaWiFS algorithm-the OC4-V4 algorithm—in the coastal waters of the Bay of Bengal will underestimate chlorophyll-a by up to 30%. The results show a good correlation with an R value of 0.61 using OC2 algorithm. However, all the other global algorithms over estimate the chlorophyll-a concentration even in low chlorophyll concentration range. The comparison between in-situ and all the existing chlorophyll algorithms shows the efficiency of these algorithms for quantification of chlorophyll in coastal waters and hence the need to develop regional algorithms and fluorescence based algorithms for better quantification.  相似文献   

5.
The opening of the Bonnet Carré spillway to prevent flood threat to New Orleans in April 2008 created a sediment plume in the Lake Pontchartrain. The nutrient rich plume triggered a massive algal bloom in the lake. In this article, we have quantified the spatio-temporal distribution of the plume (suspended solids) and the bloom (chlorophyll-a (chl-a)) in the lake using remotely-sensed data. We processed the Moderate-resolution Imaging Spectroradiometer satellite data for mapping the total suspended solids (TSS) and chl-a concentrations. An existing algorithm was used for estimating TSS whereas a novel slope model was developed to predict the per-pixel chl-a concentration. Both algorithms were successful in capturing the spatio-temporal trend of TSS and chl-a concentrations, respectively. Algal growth was found to be inversely related to TSS concentrations and a time lag of ~45 days existed between the spillway opening and the appearance of the first algal bloom at an observation location.  相似文献   

6.
Reservoir water levels extracted from SARAL/AltiKa GDR data for the period 2013–2014 and water spread areas delineated from Resourcesat P6-AWiFS sensor and RISAT 1 microwave data corresponding to SARAL/AltiKa cycles were used for assessment of reservoir capacity in the Mayurakshi reservoir, Jharkhand state, India. It was found that the reservoir capacity based on the SARAL is around 474.62 Mm3 in comparison to in situ based estimate i.e. around 486.6 Mm3, indicating variation of <3%. Further, comparison of these estimates computed using SARAL and in situ with original reservoir capacity (547.59 Mm3) indicated loss of reservoir capacity is around 13.33 and 11.14%, respectively, within a span of 59 years. The hydrographic survey in the year 1999–2000 also proved that the storage capacity has reduced from 547.6 Mm3 in 1955 to 474.8 Mm3 indicating loss of nearly 13.3 % of total live capacity over period of 45 years.  相似文献   

7.
An artificial neural network (ANN) based chlorophyll-a algorithm was developed to estimate chlorophyll-a concentration using OCEANSAT-I Ocean Colour Monitor (OCM) satellite-data. A multi-layer perceptron (MLP) type neural network was trained using simulated reflectances (~60,000 spectra) with known chlorophyll-a concentration, corresponding to the first five spectral bands of OCM. The correlation coefficient(r 2) andRMSE for the log transformed training data was found to be 0.99 and 0.07, respectively. The performance of the developed ANN-based algorithm was tested with the global SeaWiFS Bio-optical Algorithm Mini Workshop (SeaBAM) data (~919 spectra), 0.86 and 0.13 were observed asr 2 andRMSE for the test data set. The algorithm was further validated with thein-situ bio-optical data collected in the northeastern Arabian Sea (~215 spectra), ther 2 andRMSE were observed as 0.87 and 0.12 for this regional data set. Chlorophyll-a images were generated by applying the weight and bias matrices obtained during the training, on the normalized water leaving radiances (nL W) obtained from the OCM data after atmospheric correction. The chlorophyll-a image generated using ANN based algorithm and global Ocean Chlorophyll-4 (OC4) algorithm was compared. Chlorophyll-a estimated using both the algorithms showed a good correlation for the open ocean regions. However, in the coastal waters the ANN algorithm estimated relatively smaller concentrations, when compared to OC4 estimated chlorophyll-a.  相似文献   

8.
Quantitative assessment of chlorophyll-a concentration and its variability is an important input for the oceanic primary productivity modeling and also a key parameter in the global carbon cycle studies. This present work is focused to understand the spatial and temporal variability of phytoplankton in the Bay of Bengal (BOB) during winter monsoon season of October 1999 to March 2000 using Ocean Colour Monitor (OCM) sensor onboard OCEANSAT-1 satellite. Daily chlorophyll-a images from OCM sensor were used in the study. Efforts were also put to study the correlation between chlorophyll-a concentrations; NOAA-AVHRR derived Sea Surface Temperature (SST) and QuickSCAT scatterometer derived wind stress data. Analysis of the chlorophyll-a images shows the presence of extensive phytoplankton blooms during mid December 1999 to early January 2000 in the western part of BOB. The bloom dominated regions also exhibit reduced SST (∼24–27°C) and enhanced wind stress indicating upwelling processes leading nutrient entrainment in the upper column of the sea surface. Apart from this, higher phytoplankton biomass associated with the fresh water reverine plumes has also been observed. During October 1999 a super cyclone was active in the BOB, as increase in the productivity was observed in the early November 1999 images of OCM data due to the cyclone induced churning of the water column.  相似文献   

9.
Soil organic carbon (SOC) is an important aspect of soil quality and plays an imperative role in soil productivity in the agriculture ecosystems. The present study was applied to estimate the SOC stock using space-borne satellite data (Landsat 4–5 Thematic Mapper [TM]) and ground verification in the Medinipur Block, Paschim Medinipur District and West Bengal in India. In total, 50 soil samples were collected randomly from the region according to field surveys using a hand-held Global Positioning System (GPS) unit to estimate the surface SOC concentrations in the laboratory. Bare soil index (BSI) and normalized difference vegetation ndex (NDVI) were explored from TM data. The satellite data-derived indices were used to estimate spatial distribution of SOC using multivariate regression model. The regression analysis was performed to determine the relationship between SOC and spectral indices (NDVI and BSI) and compared the observed SOC (field measure) to predict SOC (estimated from satellite images). Goodness fit test was performed to determine the significance of the relationship between observed and predicted SOC at p ≤ 0.05 level. The results of regression analysis between observed SOC and NDVI values showed significant relationship (R2 = 0.54; p < 0.0075). A significant statistical relationship (r = ?0.72) was also observed between SOC and BSI. Finally, our model showed nearly 71% of the variance of SOC distribution could be explained by SOC and NDVI values. The information from this study has advanced our understanding of the ongoing ecological development that affects SOC dissemination and might be valuable for effective soil management.  相似文献   

10.
Spatial and temporal distribution of chlorophyll a (chl a) and Total Suspended Matter (TSM) and inter comparison of Ocean Color Monitor-2 (OCM-2) and Moderate Resolution Imaging Spectro-radiometer (MODIS-Aqua) derived chlorophyll a and TSM was made along the southwest Bay of Bengal (BoB). The in-situ chl a and TSM concentration measured during different seasons were ranged from 0.09 to 10.63 μgl?1 and 11.04–43.75 mgl?1 respectively. OCM-2 and MODIS derived chl a showed the maximum (6–8 μgl?1) at nearshore waters and the minimum (0–1 μgl?1) along the offshore waters. OCM-2 derived TSM imageries showed the maximum (50–60 mgl?1) along the nearshore waters of Palk Strait and the moderate concentration (2–5 mgl?1) was observed in the offshore waters. MODIS derived minimum TSM concentration (13.244 mgl?1) was recorded along the offshore waters, while the maximum concentration of 15.78 mgl?1 was found along the Kodiakarai region. The inter-comparison of OCM-2 and MODIS chl a data (R 2 ?=?0.549, n?=?49, p?<?0.001, SEE?=?±0.117) indicate that MODIS data overestimates chl a concentration in the nearshore waters of the southern BoB compared to the OCM-2. The correlation between OCM-2 and MODIS-Aqua TSM data (R 2 ?=?0.508, N?=?53, P?<?0.001 and SEE?=?±0.024) confirms that variation in the range of values measured by OCM-2 (2–60 mgl?1) and the MODIS (13–16 mgl?1) derived TSM values. Despite problems in range of measurements, persistent cloud cover etc., the launch of satellites like OCM-2 with relatively high spatial resolutions makes job easier and possible to monitor chl a distribution and sediment discharges on day to day basis in the southwest BoB.  相似文献   

11.
Reservoir sedimentation is the gradual accumulation of incoming sediments from upstream catchment leading to the reduction in useful storage capacity of the reservoir. Quantifying the reservoir sedimentation rate is essential for better water resources management. Conventional techniques such as hydrographic survey have limitations including time-consuming, cumbersome and costly. On the contrary, the availability of high resolution (both spatial and temporal) in public domain overcomes all these constraints. This study assessed Jayakwadi reservoir sedimentation using Landsat 8 OLI satellite data combined with ancillary data. Multi-date remotely sensed data were used to produce the water spread area of the reservoir, which was applied to compute the sedimentation rate. The revised live storage capacity of the reservoir between maximum and minimum levels observed under the period of analysis (2015–2017) was assessed utilizing the trapezoidal formula. The revised live storage capacity is assessed as 1942.258 against the designed capacity of 2170.935 Mm3 at full reservoir level. The total loss of reservoir capacity due to the sediment deposition during the period of 41 years (1975–2017) was estimated as 228.677 Mm3 (10.53%) which provided the average sedimentation rate of 5.58 Mm3 year1. As this technique also provides the capacity of the reservoir at the different elevation on the date of the satellite pass, the revised elevation–capacity curve was also developed. The sedimentation analysis usually provides the volume of sediment deposited and rate of the deposition. However, the interest of the reservoir authorities and water resources planner’s lies in sub-watershed-wise sediment yield, and the critical sub-watersheds upstream reservoir requires conservation, etc. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) was used for the estimation of sediment yield of the reservoir. The average annual sediment yield obtained from the SWAT model using 36 years of data (1979–2014) was 13.144 Mm3 year?1 with the density of the soil (loamy and clay) of 1.44 ton m?3. The findings revealed that the rate of sedimentation obtained from the remote sensing-based methods is in agreement with the results of the hydrographic survey.  相似文献   

12.
One of the challenges in fighting plant invasions is the inefficiency of identifying their distribution using field inventory techniques. Remote sensing has the potential to alleviate this problem effectively using spectral profiling for species discrimination. However, little is known about the capability of remote sensing in discriminating between shrubby invasive plants with narrow leaf structures and other cohabitants with similar ecological niche. The aims of this study were therefore to (1) assess the classification performance of field spectroradiometer data among three bushy and shruby plants (Artemesia afra, Asparagus laricinus, and Seriphium plumosum) from the coexistent plant species largely dominated by acacia and grass species, and (2) explore the performance of simulated spectral bands of five space-borne images (Landsat 8, Sentinel 2A, SPOT 6, Pleiades 1B, and WorldView-3). Two machine-learning classifiers (boosted trees classification and support vector machines) were used to classify raw hyperspectral (n = 688) and simulated multispectral wavelengths. Relatively high classification accuracies were obtained for the invasive species using the original hyperspectral bands for both classifiers (overall accuracy, OA = 83–97%). The simulated data resulted in higher accuracies for Landsat 8, Sentinel 2A, and WorldView-3 compared to those computed for bands simulated to SPOT 6 and Pleiades 1B data. These findings suggest the potential of remote-sensing techniques in the discrimination of different plant species with similar morphological characteristics occupying the same niche.  相似文献   

13.
Since coastal waters are one of the most vulnerable marine systems to environmental pollution, it is very important to operationally monitor coastal water quality. This study attempts to estimate two major water quality indicators, chlorophyll-a (chl-a) and suspended particulate matter (SPM) concentrations, in coastal environments on the west coast of South Korea using Geostationary Ocean Color Imager (GOCI) satellite data. Three machine learning approaches including random forest, Cubist, and support vector regression (SVR) were evaluated for coastal water quality estimation. In situ measurements (63 samples) collected during four days in 2011 and 2012 were used as reference data. Due to the limited number of samples, leave-one-out cross validation (CV) was used to assess the performance of the water quality estimation models. Results show that SVR outperformed the other two machine learning approaches, yielding calibration R2 of 0.91 and CV root-mean-squared-error (RMSE) of 1.74 mg/m3 (40.7%) for chl-a, and calibration R2 of 0.98 and CV RMSE of 11.42 g/m3 (63.1%) for SPM when using GOCI-derived radiance data. Relative importance of the predictor variables was examined. When GOCI-derived radiance data were used, the ratio of band 2 to band 4 and bands 6 and 5 were the most influential input variables in predicting chl-a and SPM concentrations, respectively. Hourly available GOCI images were useful to discuss spatiotemporal distributions of the water quality parameters with tidal phases in the west coast of Korea.  相似文献   

14.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.  相似文献   

15.
In the tropics, unmonitored land use/cover types cause significant effects on the narrowing and widening of river channels which affects the integrity of water resources. River channel planform extent was characterized using Landsat images, while water and bedload samples were collected and analysed for a period of one year. The results revealed that in 1986, the channel planform covered 3.7 sq km in length than in 2013 where it increased to 4.2 sq km. Wetland (537.1mgl?1) and bushland (186.3mgl?1) cover types had the highest concentration of suspended sediments. Fine sand (0.25 mm), silty sand (1 mm) and silty clay (0.125 mm) bedload particle types dominated the riverbed along the channel from the sampled land use/cover types. The high concentration of sediments, bedload materials, bank instability, and streamflow were significant contributors to the narrowing and widening of the channel (p < 0.05). Agricultural land use was the major contributor of channel aggradation (0.8 m) and degradation (0.25 m) compared to tree plantations, bushlands, forest and wetland cover types.  相似文献   

16.
The challenge of assessing and monitoring the influence of rangeland management practices on grassland productivity has been hampered in southern Africa, due to the lack of cheap earth observation facilities. This study, therefore, sought to evaluate the capability of the newly launched Sentinel 2 multispectral imager (MSI) data, in relation to Hyperspectral infrared imager (HyspIRI) data in estimating grass biomass subjected to different management practices, namely, burning, mowing and fertilizer application. Using sparse partial least squares regression (SPLSR), results showed that HyspIRI data exhibited slightly higher grass biomass estimation accuracies (RMSE = 6.65 g/m2, R2 = 0.69) than Sentinel 2 MSI (RMSE = 6.79 g/m2, R2 = 0.58) across all rangeland management practices. Student t-test results then showed that Sentinel 2 MSI exhibited a comparable performance to HyspIRI in estimating the biomass of grasslands under burning, mowing and fertilizer application. In comparing the RMSEs derived using wave bands and vegetation indices of HyspIRI and Sentinel, no statistically significant differences were exhibited (α = 0.05). Sentinel (Bands 5, 6 and 7) and HyspIRI (Bands 730 nm, 740 nm, 750 nm, 710 nm), as well as their derived vegetation indices, yielded the highest predictive accuracies. These findings illustrate that the accuracy of Sentinel 2 MSI data in estimating grass biomass is acceptable when compared with HyspIRI. The findings of this work provide an insight into the prospects of large-scale grass biomass modeling and prediction, using cheap and readily available multispectral data.  相似文献   

17.
Tropical Dry Forest deciduousness is a behavioral response to climate conditions that determines ecosystem-level carbon uptake, energy flux, and habitat conditions. It is regulated by factors related to stand age, and landscape scale variability in deciduous phenology may affect ecosystem functioning in forests throughout the tropics. This study determines whether observed phenological differences are explainable by forest age in the southern Yucatán Peninsula in Mexico, where forest clearing for shifting cultivation has created a mosaic of forest stands of varying age. Matched-pair statistical tests compare neighboring forest pixels of different age class (12–22 years versus 22+ years) and detect significant differences in Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)-derived metrics related to the timing and intensity of deciduousness during three dry seasons (2008–2011). In all seasons, young forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI normalized by annual maximum EVI (p < 0.001), and larger normalized EVI change during successive dry season months relative to start-of-dry-season EVI (p < 0.001), than neighboring older forests subject to similar environmental conditions.  相似文献   

18.
This article investigates the performance of MERIS reduced resolution data to monitor water quality parameters in the Berau estuary waters, Indonesia. Total suspended matter (TSM), Chlorophyll-a (Chl-a) concentration and diffuse attenuation coefficient (Kd ) were derived from MERIS data using three different algorithms for coastal waters: standard global processor (MERIS L2), C2R and FUB. The outcomes were compared to in situ measurements collected in 2007. MERIS data processed with C2R gave the best retrieval of Chl-a, while MERIS L2 performed the best for TSM retrieval, but large deviations from in situ data were observed, pointing at inversion problems over these tropical waters for all standard processors. Nevertheless, MERIS can be of use for monitoring equatorial coastal waters like the Berau estuary and reef system. Applying a Kd (490) local algorithm to the MERIS RR data over the study area showed a sufficient good correlation to the in situ measurements (R 2 = 0.77).  相似文献   

19.
The overarching aim of this study was to derive simple and accurate algorithms for the retrieval of water quality parameters for the Wular Lake using Landsat 8 OLI satellite data. The water quality parameters include pH, COD, DO, alkalinity, hardness, chloride, TDS, total suspended solids (TSS), turbidity, electric conductivity and phosphate. Regression analysis was performed using atmospherically corrected true reflectance values of original OLI bands, images after applying enhancement techniques (NDVI, principal components) and the values of the water quality parameters at different sample locations to obtain the empirical relationship. Most of the parameters were well correlated with single OLI bands with R2 greater than 0.5, whereas phosphate showed a good correlation with NDVI image. The parameters like pH and DO showed a good relation with the principal component I and IV, respectively. The high concentration of pH, COD, turbidity and TSS and low concentration of DO infers the anthropogenic impact on lake.  相似文献   

20.
Understanding factors affecting the behaviour and movement patterns of the African elephant is important for wildlife conservation, especially in increasingly human-dominated savanna landscapes. Currently, knowledge on how landscape fragmentation and vegetation productivity affect elephant speed of movement remains poorly understood. In this study, we tested whether landscape fragmentation and vegetation productivity explains elephant speed of movement in the Amboseli ecosystem in Kenya. We used GPS collar data from five elephants to quantify elephant speed of movement for three seasons (wet, dry and transitional). We then used multiple regression to model the relationship between speed of movement and landscape fragmentation, as well as vegetation productivity for each season. Results of this study demonstrate that landscape fragmentation and vegetation productivity predicted elephant speed of movement poorly (R2 < 0.4) when used as solitary covariates. However, a combination of the covariates significantly (p < 0.05) explained variance in elephant speed of movement with improved R2 values of 0.69, 0.45, 0.47 for wet, transition and dry seasons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号