共查询到20条相似文献,搜索用时 0 毫秒
1.
General coupling extended multiscale FEM for elasto‐plastic consolidation analysis of heterogeneous saturated porous media 下载免费PDF全文
This paper presents a general coupling extended multiscale FEM (GCEMs) for solving the coupling problem of elasto‐plastic consolidation of heterogeneous saturated porous media. In the GCEMs, the numerical multiscale base functions for the solid skeleton and fluid phase of the coupling system are all constructed on the basis of the equivalent stiffness matrix of the unit cell, which not only contain the interaction between the solid and fluid phases but also consider the time effect. Furthermore, in order to improve the computational accuracy for two‐dimensional problems, a multi‐node coarse element strategy for the GCEMs is proposed, and a two‐scale iteration algorithm for the elasto‐plastic consolidation analysis is developed. Some one‐dimensional and two‐dimensional homogeneous and heterogeneous numerical examples are carried out to validate the proposed method through the comparison with the coupling multiscale FEM and standard FEM. Numerical results show that the newly developed GCEMs can almost preserve the same convergent property as the standard FEM and also possesses the advantages of high computational efficiency. In addition, the GCEMs can be easily applied to other coupling multifield and multiphase transient problems. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
In this contribution an algorithm for parameter identification of geometrically linear Terzaghi–Biot‐type fluid‐saturated porous media is proposed, in which non‐uniform distributions of the state variables such as stresses, strains and fluid pore pressure are taken into account. To this end a least‐squares functional consisting of experimental data and simulated data is minimized, whereby the latter are obtained with the finite element method. This strategy allows parameter identification based on in situ experiments. In order to improve the efficiency of the minimization process, a gradient‐based optimization algorithm is applied, and therefore the corresponding sensitivity analysis for the coupled two‐phase problem is described in a systematic manner. For illustrative purpose, the performance of the algorithm is demonstrated for a slope stability problem, in which a quadratic Drucker–Prager plasticity model for the solid and a linear Darcy law for the fluid are combined. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
3.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of u–p formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
The response of saturated porous medium is of significant interest in many fields ranging from geomechanics to biomechanics. Biot was the first to formulate the basic equations governing the process of coupled flow and deformation in porous media. Depending on the nature of loading vis‐à‐vis the characteristics of the media, different formulations (fully dynamic, partly dynamic, quasi‐static) are possible. In this study, analytical solutions are developed for the response of saturated and nearly saturated porous media under plane strain condition. The solutions for different formulations are developed in terms of non‐dimensional parameters. The response is studied for various conditions and the regions of validity for various formulations are identified in a parametric space. An assessment of the needed formulation for few important problems is also presented. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
在非饱和多孔介质渗流分析中,近饱和条件下物理模型与数值模型之间的差异会导致数值不稳定问题。为解决这一问题,并保证模拟结果的可靠性,提出了3种方法,并在有限元分析程序U-DYSAC2中分别进行了程序代码的实施。通过数值试验与试验数据的比较,证实了在近饱和条件下土-水特征曲线和水力传导函数的高非线性可引起数值收敛性、稳定性和精度问题,而且在不同条件下含水率和基质吸力的预测结果差异明显。在3种方法中,修正的Van Genuchten模型(MVGM)方法对含水率的预测较为准确,而Line方法对基质吸力的预测较为合理。因此,解决在分析近饱和条件下非饱和多孔介质渗流问题时,为获得接近真实的模拟结果,采用合适的数值方法进行预测是非常关键的。 相似文献
6.
Mohammad Reza Maleki Javan 《国际地质力学数值与分析法杂志》2015,39(3):229-250
It is well known that for a sufficiently high seepage velocity, the governing flow law of porous media is nonlinear (J. Computers & Fluids 2010; 39 : 2069–2077). However, this fact has not been considered in the studies of soil‐pore fluid interaction and in conventional soil mechanics. In the present paper, a fully explicit dynamic finite element method is developed for nonlinear Darcy law. The governing equations are expressed for saturated porous media based on the extension of the Biot (J. Appl. Phys. 1941; 12 : 155–164) formulation. The elastoplastic behavior of soil under earthquake loading is simulated using a generalized plasticity theory that is composed of a yield surface along with non‐associated flow rule. Numerical simulations of porous media subjected to horizontal and vertical components of ground motion excitations with different permeability coefficients are carried out; while computed maximum pore water pressure is specially taken into consideration to make the difference between Darcy and non‐Darcy flow regimes tangible. Finally, the effect of non‐Darcy flow on the evaluated liquefaction potential of sand in comparison to conventional Darcy law is examined. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
The paper analyses the interaction between two internal length scales during dynamic strain localization in multiphase porous materials. The first internal length is introduced in the mathematical model by the gradient‐dependent plasticity for the solid skeleton, while the second one is naturally contained in the multiphase model and is due to the seepage process of the water via Darcy's law, which induces a rate‐dependent behaviour of the solid skeleton. Numerical results of a one‐dimensional example of water saturated porous medium demonstrate the competing effect between these two length scales. The porous medium is here treated as a multiphase continuum, with the pores filled by water and air, the last one at constant atmospheric pressure. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
We present a time‐discontinuous Galerkin method (DGT) for the dynamic analysis of fully saturated porous media. The numerical method consists of a finite element discretization in space and time. The discrete basis functions are continuous in space and discontinuous in time. The continuity across the time interval is weakly enforced by a flux function. Two applications and several numerical investigations confirm the quality of the proposed space–time finite element scheme. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
非饱和土化学-塑性耦合本构行为的数值模拟 总被引:2,自引:0,他引:2
基于Hueckel提出的饱和黏土化学-塑性本构模型和Gallipoli提出的非饱和土弹塑性本构模型,提出了一个新的非饱和多孔介质的化学-塑性本构模型,并建立了该模型的隐式积分算法,算法中考虑了化学软化和非饱和吸力的影响。在已有的非饱和多孔介质有限元分析程序平台上进行了程序研发,对孔隙水中化学污染物浓度变化对非饱和土力学行为的影响进行数值模拟,使所研制的程序能够进行岩土工程问题的化学-力学耦合非线性分析。 相似文献
10.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
This study aims at determining the macroscopic strength of porous materials having a Drucker–Prager solid phase at microscale and two populations of saturated pores with different pressures at both micro and meso scales. To this end, and taking account of the available results by Maghous et al. (2009), we first derive a closed‐form expression of approximate criterion for a dry porous medium whose matrix obeys to a general elliptic criterion. The methodology to formulate this criterion is based on limit analysis of a hollow sphere subjected to a uniform strain rate boundary conditions. The obtained results are then implemented in a two‐step homogenization procedure, which interestingly delivers analytical expression of the macroscopic criterion for dry double porous media whose solid phase at microscale obeys to a Drucker–Prager criterion. After a brief discussion of the results, we propose an extension to double porous saturated media, allowing therefore to quantify the simultaneous effects of the different pore pressures applied on each voids population. The results are discussed in terms of the existence or not of effective stresses. Finally, they are assessed by comparing them to recently available results. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
In this paper, a mathematical model is presented for the analysis of dynamic fracture propagation in the saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double‐nodded zero‐thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The crack is automatically detected and propagated perpendicular to the maximum effective stress. The spatial discretization is continuously updated during the crack propagation. Numerical examples from the hydraulic fracturing test and the concrete gravity dam show the capability of the model to simulate dynamic fracture propagation. The comparison is performed between the quasi‐static and fully dynamic solutions, and the performance of two analyses is investigated on the values of crack length and crack mouth opening. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
A new mixed displacement‐pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher‐order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC‐FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
Dobry和Gazetas分析群桩振动特性的理论是将土体视为单相介质提出的,对于饱和土中桩-桩相互作用和群桩振动是否适用有待验证。将土体视为液固两相多孔介质,运用Novak薄层法和引入势函数的方法,求解了饱和土层的水平动力阻抗和自由场水平位移衰减函数,并在初参数法的基础上求解了桩-桩水平动力相互作用因子,运用基于动力相互作用因子的叠加原理对饱和土中群桩的水平振动进行了分析,并以3×3桩为例对群桩动力阻抗的主要影响参数进行了分析。提供了一种分析饱和土中桩-桩动力相互作用和群桩动力阻抗的新方法。 相似文献
15.
Given the contrasting behaviour observed for geomaterials, for example, during landslides of the flow type, this contribution proposes an original constitutive model, which associates both an elasto‐plastic relation and a Bingham viscous law linked by a mechanical transition criterion. This last is defined as the second‐order work sign for each material point, which is a general criterion for divergence instabilities. Finite element method with Lagrangian integration points is chosen as a framework for implementing the new model because of its well‐known ability to deal with both solid and fluid behaviours in large deformation processes. A first boundary model considering a sample of initially stable soil, a slope and an obstacle is performed. The results show the power of the constitutive model because the consistent evolution of initiation, propagation and arrest of the mudflow is described. A parametric study is led on various plastic and viscous parameters to determine their influence on the flow development and arrest. Finally, forces against the obstacle are compared with good agreement with those of other authors for the same geometry and a pure viscous behaviour. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Conditions for localization of deformation into a planar (shear) band in the incremental response of elastic–plastic saturated porous media are derived in the case of small strains and rotations. The critical modulus for localization of both undrained and drained conditions are given in terms of the discontinuous bifurcation analysis of the problem. Loss of uniqueness of the response of coupled problems is investigated by means of positiveness of the second‐order work density. From the discussion of drained conditions, it is shown that there are two critical hardening moduli, i.e. lower and upper hardening moduli which, respectively, correspond to single phase material (large permeability) and to undrained conditions (small permeability). In analogy to one‐dimensional results, it is shown that there exists a domain of permeability values where we have loss of stability, but the waves can still propagate. In this domain finite element results do not show pathological mesh dependence, and permeability will play the role of an internal length parameter in dynamic models. The length scale prediction is thus given for multi‐dimensional problems. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
17.
This paper presents a fully coupled finite element formulation for partially saturated soil as a triphasic porous material, which has been developed for the simulation of shield tunnelling with heading face support using compressed air. While for many numerical simulations in geotechnics use of a two‐phase soil model is sufficient, the simulation of compressed air support demands the use of a three‐phase model with the consideration of air as a separate phase. A multiphase model for soft soils is developed, in which the individual constituents of the soil—the soil skeleton, the fluid and the gaseous phase—and their interactions are considered. The triphasic model is formulated within the framework of the theory of porous media, based upon balance equations and constitutive relations for the soil constituents and their mixture. An elasto‐plastic, cam–clay type model is extended to partially saturated soil conditions by incorporating capillary pressure according to the Barcelona basic model. The hydraulic properties of the soil are described via DARCY 's law and the soil–water characteristic curve after VAN GENUCHTEN . Water is modelled as an incompressible and air as a compressible phase. The model is validated by means of selected benchmark problems. The applicability of the model to geotechnical problems is demonstrated by results from the simulation of a compressed air intervention in shield tunnelling. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
19.
This paper presents first the applications of uniqueness and strain localization analysis of saturated porous media, where localization of deformation into well defined narrow zones in a saturated porous medium is studied in terms of discontinuous bifurcation theory. A generalized plasticity constitutive model and a Mohr–Coulomb model are used in both the theoretical and numerical analyses of shear band formations. The critical hardening moduli and shear band angle for localization are computed, and quantitative results are given for both constitutive models. Numerical results previously obtained and new ones are confirmed by this analytical and numerical investigation. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
20.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献