首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The GALO basin modeling system has been applied for the numerical reconstruction of the subsidence history, variations in temperature, and maturity of the organic matter of sedimentary rocks composing the main tectonic structures of Sirte Basin. The reconstruction was carried out for eight sedimentary cross sections along the profile stretching from the Cyrenaica Platform on the eastern coast of the basin to the Hun Graben on its western wall. The interval of depths for temperature calculations included the sedimentary layer, consolidated crust, and the mantle to below 100 km. This extensive depth coverage made it possible to use the analysis of the variations in the tectonic subsidence of the basin for estimating the amplitudes and duration of the events of thermal activation and extension of the lithosphere of the basin in the history of its evolution. The modeling suggests that thermal activations of the lithosphere in the Albian-Cenomanian and Oligocene-Pleistocene are common for all tectonic structures of the Sirte Basin and the Cyrenaica Platform and that a relatively high temperature regime is also characteristic of the present-day conditions in the Sirte Basin and Cyrenaica Platform. To a considerable extent, such a regime is caused by the thermal activation of the lithosphere of the basin during the last 10 Ma. The intensity of this activation is highest in the western part of the basin, where it is accompanied by the highest erosion amplitudes. The analysis of the variations in tectonic subsidence of the basement also suggests a series of intervals of lithospheric extension, which accounts for the stages of relatively rapid subsidence of the basin. Two intervals of significant extension of the lithosphere in the Upper Cretaceous and Paleocene are common for all areas within the basin. Here, the total amplitudes of the crustal extension attained 1.5 in the central part of the Sirte Basin (the Ajdabiya and Maradah troughs and Zelten and Dahra platforms), was equal to 1.3 in the Hameimat and Zallah troughs, and were minimal (1.11–1.17) in the periphery of the basin (within the Hun Graben and Cyrenaica Platform).  相似文献   

3.
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man‐Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m3/d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone‐siltstone aquitard and is being heavily pumped. The aquifer and fine‐grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells.  相似文献   

4.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   

5.
ABSTRACT

A basic component of any hydrogeological study is the magnitude and temporal variation of groundwater recharge. This can be difficult to assess accurately, particularly in arid and semi-arid rainfed mid-mountain zones, as is the situation in the rural, low population density zones of North-Central Chile. In this study, recharge in the Punitaqui Basin, North-Central Chile, was characterized, contrasting the results of two methods: a modified Thornthwaite-Mather (MTM) and discharge recession analysis (DRA). We found a recharge rate of between 1 and 4% of average annual precipitation. Average recharge estimated by the MTM method is consistently higher than that estimated by DRA. Also, DRA tends to smooth the recharge values, resulting in a lower inter-annual variation coefficient. Both methods identified a threshold value of total annual precipitation, above which recharge can be expected to occur, of the order of 180 mm year?1, consistent with values reported in similar areas.  相似文献   

6.
《Journal of Hydrology》1999,214(1-4):1-7
The amount of groundwater recharge by channel infiltration is estimated for El Barbon basin, in Baja California, Mexico. The basin’s lower portion includes the valleys of Ojos Negros and Real del Castillo Viejo, which are crossed by several ephemeral washes, including the mainstem El Barbon Wash. A distributed catchment model with the capability for nonlinear channel routing and channel abstraction is used to calculate groundwater recharge by channel infiltration for storm events of 2-, 5-, 10-, 25-, 50-, and 100-yr return period. The results confirm that event channel infiltration can be a substantial component of the vertical recharge.  相似文献   

7.
《水文科学杂志》2013,58(4):739-753
Abstract

The hydrodynamic behaviour of a sloped phreatic aquifer in the Tigray Highlands in northern Ethiopia is described. The aquifer is situated in the soils of a plateau on top of a basalt sequence and lies on steep slopes; the latter lead to hydraulic gradients that can cause high discharge fluxes. Distinct wet and dry seasons characterize the climate of the Tigray Highlands and recharge is absent during the dry season. Because of the fertile vertisols that have developed, the plateau is heavily cultivated and thus has great local economic, and hence social, importance. Water for land irrigation is almost exclusively delivered by rainfall, which is largely restricted to the period June—September. During the dry season, the water table drops dramatically and the aquifer drains nearly completely, under the strong gravity-driven, sustained discharges. This study strives to give insights into recharge and discharge mechanisms of the aquifer, in order to improve the effectiveness of the implemented water conservation measures.  相似文献   

8.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The Mississippi River Valley Alluvial Aquifer ranks among the most overdrafted aquifers in the United States due to intensive irrigation. Concern over declining water levels has increased focus on understanding the sources of recharge. Numerous oxbow lakes overlie the aquifer that are often considered hydraulically disconnected from the groundwater system due to fine-grained bottom sediments. In the current study, groundwater levels in and around a 445-ha oxbow lake-wetland in Mississippi were monitored for a 2-year period that included an unusually long low-water condition in the lake (>17 months), followed by a high-water event lasting over 4 months before returning to earlier low-water levels. The high-water pulse (>4 m rise) provided a unique opportunity to track the impact in the underlying alluvial aquifer. During low-water conditions, groundwater flowed westward beneath the lake. Following the lake rise, groundwater beneath and near the perimeter responded as quickly as the same day, with more delayed responses moving away from the lake. Within 2 months, a groundwater mound formed near the centre of the oxbow (>3 m increase), with a reversal in the local hydraulic gradient towards the east. Flow returned to a westward gradient when the lake level dropped back below 0.3 m. Analysis of precipitation and nearby river stage could not account for the observed behavior. Recharge to the aquifer is attributed to rising water levels spreading over point bar deposits and into the surrounding forested wetlands where preferential flow pathways are likely to exist due to buried and decomposing tree remains. An earlier study in the wetland demonstrated an increasing redox potential in isolated zones, consistent with the existence of preferential flow pathways through the bottom sediments (Lahiri & Davidson, 2020). Retaining high-water levels in oxbow lakes could be a relatively low-cost water management practice for enhancing aquifer recharge.  相似文献   

11.
Arid-site recharge, while generally low, can be highly variable. Recharge under similar climate and soil conditions but with different plant cover and topography can vary from zero to more than the annual precipitation. Simple estimates of recharge based on fixed fractions of annual precipitation are misleading because they do not reflect the plant and soil factors controlling recharge. Detailed water balance models, successful for irrigated agriculture, fail to predict evapotranspiration accurately under conditions where plants suffer seasonal water stress and cover is sparse. Recharge, when estimated as a residual in water balance models, may be in error by as much as an order of magnitude. Similar errors can occur when soil water flow models are used with measured or estimated soil hydraulic conductivities and tension gradients. Lysimetry and tracer tests offer the best hope for evaluating recharge at arid sites, particularly in siting waste disposal facilities, where reliable recharge estimates are needed. Quantification of drainage using lysimetry over several years under a given set of soil, plant, and climate conditions for a specific site can provide a basis for calibrating models for recharge prediction. Tracer tests using such long-lived tracers as 36Cl or perhaps stable isotopes (180, deuterium) can provide qualitative estimates of recent recharge at a given site.  相似文献   

12.
13.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   

14.
The evapotranspiration and groundwater recharge from two natural areas with high (oak) and low (heath) vegetation were estimated by calibrating a semi-physical numerical soil water and heat model to fit 8 and 7 years of TDR-measurements of water content, respectively. The measurements were made between the surface and 7 m depth. For the oak stand, the estimated annual recharge for the years 1992–1999 is 390 mm, the evaporation from soil and interception is 205 mm, and the transpiration is 285 mm. For the heath area estimation was carried out for the years 1993–1999. However, the heath was struck by a heavy beetle attack in 1994, which strongly affected the vegetation and thus the water balance for the following 3 years. For years not affected, the estimated recharge is 733 mm (about 50% larger than for the oak stand for the same years), the evaporation is 316 mm, and the transpiration is 128 mm. The estimated recharge values compare fairly well to estimates obtained from bromide tracer experiments. However, the recharge estimates obtained from the tracer experiments are very uncertain. The uncertainty is mainly due to spatial heterogeneity making the three replicate samples taken here for each time and depth insufficient.

The analyses of TDR-measurements and tracer data showed that water front movement depends on the antecedent soil water content. Some layers are bypassed, especially at low water contents, and at high soil water contents preferential flow was observed at the heath site.  相似文献   


15.
ABSTRACT

Groundwater is an important resource in semi-arid Chile to meet local social, economic and environmental water demands. Historical ground water level (GWL) data (1986–2014) in the Coquimbo Region were analysed to characterize short and long-term alluvial aquifer dynamics. Long-term trends were assessed using a seasonal Mann-Kendall trend test, which indicated that more than 80% of the time series exhibit a negative trend. Short-term analysis using cross-correlation provided information on recharge origin and its spatial pattern. Runoff and GWL are highly correlated depending on elevation, signifying that stream to aquifer flow is an important recharge process at higher altitudes. Long-term recharge behaviour was characterized using time-frequency wavelet power spectra. The results show significant amplitude of the 5-year recharge period for GWL, which is driven by a 5-year El Niño index periodicity. Such results provide key information of the spatiotemporal functioning of aquifers.  相似文献   

16.
Estimation of groundwater recharge to an unconfined aquifer is studied using analytical and numerical techniques and results are compared with field observations. There is an acute need for such estimation in water balance studies in arid climates, and the case study in this paper is for such a region. The wetting front movement in the unsaturated zone depends on antecedent soil moisture, the ponded water depth and its duration, and on the position of the water table and the hydraulic properties of the unsaturated zone. A hydraulic connection between the recharge basin and the aquifer is not immediately established because the wetting front is unsaturated. A numerical model is applied to estimate recharge in an arid-zone wadi, and its validity is tested by comparing it with an analytical solution of the equations. The calculated recharge values matched the piezometric levels observed at a well site at the edge of the wadi channel. The total recharge depths found by integration in the time domain provided a good estimate of the transmitted volume of water per unit length of wadi channel. The findings were confirmed by runoff volume measurements at gauging stations located in the basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

18.
A mathematical model is presented to describe the variations of the water table in an unconfined aquifer due to time-varying recharge applied from four rectangular basins. The model is developed by solving the linearised Boussinesq equation using the extended finite Fourier cosine transform. The time-varying recharge rate is approximated by a number of piecewise linear elements of different lengths and slopes depending on the nature of the variation in recharge rate. Application of this model for the prediction of water table fluctuations and in the sensitivity analysis of various controlling parameters on the aquifer response is demonstrated in an example.  相似文献   

19.
Determining the groundwater contribution of nonpoint source pollution at a watershed scale is a challenging issue. In this study, we utilized a top‐down approach to characterize representative groundwater response units (GRUs) based on land use and landscape position (e.g., upland, sideslope, or floodplain) in the 275‐km2 Clear Creek Watershed, Iowa. Groundwater monitoring wells were then established along downslope transects in representative GRUs. This unique combination of top‐down/bottom‐up approaches allowed us to estimate groundwater pollutant loads at the watershed scale with minimal monitoring. For the 2015 study period, results indicated that more groundwater recharge occurred in the floodplain (404 mm) compared to the uplands or sideslopes (281 and 165 mm, respectively), irrespective of land use. Recharge in the floodplains consisted of 37% of the annual precipitation, whereas upland wells averaged 26% and sideslopes averaged 15% of the annual precipitation. Less recharge was found to occur beneath perennial grass compared to row crop and urbanized areas. Baseflow discharge accounted for 69% of the total NO3‐N exported from the Clear Creek Watershed, with row crop areas contributing approximately 95% of the annual load. Orthophosphorus (OP) yields were approximately 0.72 kg/ha beneath urban and suburban areas, three times higher than those in row crop or perennial areas. Urban and suburban areas accounted for 21.4% of groundwater orthophosphorus and chloride loads in the watershed compared to only 8.5% of the land area. Overall, the groundwater load allocation model for baseflow nutrient discharge to Clear Creek can be used to target future nonpoint source load reduction strategies at the watershed scale. The use of GRUs can pinpoint better areas of concern for controlling nutrient loads.  相似文献   

20.
ABSTRACT

India has been the subject of many recent groundwater studies due to the rapid depletion of groundwater in large parts of the country. However, few if any of these studies have examined groundwater storage conditions in all of India’s river basins individually. Herein we assess groundwater storage changes in all 22 of India’s major river basins using in situ data from 3420 observation locations for the period 2003–2014. One-month and 12-month standardized precipitation index measures (SPI-1 and SPI-12) indicate fluctuations in the long-term pattern. The Ganges and Brahmaputra basins experienced long-term decreasing trends in precipitation in both 1961–2014 and the study period, 2003–2014. Indeterminate or increasing precipitation trends occurred in other basins. Satellite-based and in situ groundwater storage time series exhibited similar patterns, with increases in most of the basins. However, diminishing groundwater storage (at rates of >0.4 km3/year) was revealed in the Ganges-Brahmaputra River Basin based on in situ observations, which is particularly important due to its agricultural productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号