共查询到20条相似文献,搜索用时 15 毫秒
1.
煤中有害微量元素对生态环境和人体健康的潜在影响是地球化学和能源环境领域研究的热点之一,地球化学制图对深刻理解地球化学过程及其变化规律具有重要作用。目前,尚缺乏中国煤中有害微量元素含量的空间分布图。通过对中国煤炭样品中1 167个Be、1 315个Co、1 406个Cu、1 191个Mo、1 247个Th 和1 390个Zn含量数据进行统计分析,测算中国煤中Be、Co、Cu、Mo、Th 和 Zn 的平均含量,并利用ArcGIS技术绘制中国煤中Be、Co、Cu、Mo、Th、Zn的含量地球化学空间分布地图。结果表明:中国煤中有害微量元素含量跨度大,数据分布呈正偏性,不符合正态分布特征;中国煤中Be、Co、Cu、Mo、Th和Zn 的平均含量分别为2.10、5.53、21.36、2.19、7.35和30.02 mg/kg;各元素含量的空间分布极不均匀;煤中有害微量元素含量空间分布格局是多种因素综合作用的结果,如物源区母岩、热液作用、水运移作用等,其中热液作用是煤中有害微量元素异常富集的典型特征。研究成果可为煤中微量元素研究和环境管理提供直观有效的参考。 相似文献
2.
《International Journal of Coal Geology》1987,8(3):269-278
Ashes of the lithotypes from some Indian coals were analyzed by emission spectroscopy for some selected elements. Based on the combined concentration and differential fixation, the elements Pb and Co appear to be supplied by the woody portion of the proto-coal material whereas Ga, Nb, Ni, Cr and In can be attributed to the non-woody portions of the proto-coal. On the other hand, Cu, Mo and part of the available Cr appear to come from both organic and inorganic sources, whereas V, Mn, Sr, La and Ba have been attributed to an extraneous inorganic source. The differential fixation of the trace elements appears to be mainly dependent on the physicochemical environment of the basin. 相似文献
3.
《International Journal of Coal Geology》2007,69(3):179-191
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions. 相似文献
4.
《Chemie der Erde / Geochemistry》2023,83(2):125960
The geochemistry of major, trace, rare earth elements (REEs), with special reference to Ge, Li, and Hg in selected Gondwana and Eocene coals, has been studied. Major oxide and trace element ratios have been utilised to compare the tectonic setting, provenance of source rocks, and paleoweathering conditions that prevailed the during formation of these coals. The Gondwana coals have a higher mean mercury and ash content (244.5 μg/kg and 17.2 %, respectively) than the Eocene coals (142.1 μg/kg, 8.9 % respectively). The major oxides, SiO2, Fe2O3, and Al2O3, in Gondwana and Eocene coals, are enriched relative to the upper continental crust (UCC), Chinese and American coals. The UCC normalized trace element concentration coefficients of the Gondwana and Eocene coals show enrichment in Ge, Se, Th, Co, Mo, Sn, W, and Li. The mean Ge and Li concentrations (mg/kg) in Gondwana (106.7, 154.7) and Eocene (120.0, 252.6) exceed the corresponding values in world coal (2.2, and 12). The Rajmahal coals have the highest mean Ge concentration (168.8 mg/kg) among the Gondwana coals while Eocene coals from East Jaintia Hills have the highest mean value (343.7 mg/kg). The Gondwana coals have a higher mean As concentration (3.5 mg/kg) in comparison to the Eocene coals (1.9 mg/kg). The mean of the rare earth elements in Gondwana (24.1 mg/kg) is higher than that in Eocene coals (11.3 mg/kg) and these values are less than the World coals (68.5 mg/kg). Both the Gondwana and Eocene coals are enriched in light rare earth elements (LREEs). However, among the Eocene coals, the Meghalayan coals show REE enrichment in comparison to Assam coals. Both the Gondwana and Eocene coals were formed in warm and humid climates under oxic conditions with moderate weathering of the source rocks. 相似文献
5.
低熟煤中的孢粉与常量元素和微量元素的相关性初探 总被引:1,自引:0,他引:1
运用电离耦合等离子体原子发射光谱(ICP-AES)和X射线荧光光谱分析(XRF),对新疆八道湾煤矿中侏罗统西山窑组煤中的孢粉角质层进行了分析,测定了煤中的常量和微量元素。并对煤中孢粉和共伴生元素进行了回归分析,探讨了微量和常量元素的煤岩学及孢粉学属性,在微量元素与孢粉的煤相学应用方面作了初步尝试。结果表明,成煤的蕨类植物孢子和裸子植物花粉与某些常量元素和微量元素有着很高的相关性;蕨类植物孢子和裸子植物花粉的相对含量在煤中具有互补性,决定了它们与微量元素的关系也具有一定的互补性。 相似文献
6.
B. Nayak A. K. Singh A. K. Upadhyay K. K. Bhattacharyya 《Journal of the Geological Society of India》2009,74(3):395-401
Lower Gondwana coal from Garu-Gensi area in the West Siang district of Arunachal Pradesh in the Eastern Himalayas have been
characterized with respect to their maceral constituents, mineral matter, ash composition, sulphurand trace-element contents.
These are low-rank bituminous coals (V0 = 0.64) and their vitrinite content is about 60%. A first hand data with respect to twenty one trace-elements are reported.
Our data indicate that these Lower Gondwana coals of extra-peninsular region are richer in terms of their trace-element content
when compared with their counter parts of peninsular India. 相似文献
7.
Trace-element determinations of 15 coal samples have been made in order to know their distribution, behaviour and associations with the organic and inorganic fractions in the coal. The coal samples have been systematically collected in stratigraphic sequences so that the vertical variation of the trace-elements can be studied. The elements determined by spectographic analysis are W, V, Cr, Sc, Y, Cu, Co, Pb, Be, Ni and Ba. The results indicate that the concentration of trace elements in these coals varies greatly from bottom to top sections. The elements V and Co are extremely poor in the top and middle sections, whereas in the bottom section they are fairly distributed. Be is extremely poor in the bottom section, and fairly distributed in the middle and top sections. W, Sc, Y have poor concentration in the bottom section as compared to the middle and top sections. Ni is fairly distributed in the bottom section whereas its concentration is poor in the middle and top sections. Cr and Cu are fairly distributed in the bottom, middle and top sections. Ba has unusually high concentration in all the sections.It appears from the present study that W, Cr, Sc, Y and Be are concentrated more in silicate minerals (clay, quartz, etc.) associated with coal, and the elements like , Co, and Ni have intimate relation with organic matters in coal and are present as organometallic compounds as well as absorbed cations. Cu and Pb which are present in the coals are derived from the inorganic matter, mainly from the pyrites, whereas W has affinity with carbonate minerals in the coals. The Ba is mainly associated with the inoraanic matter of coal; its unusually high concentration indicates association with carbonates, clays and other silicate minerals. 相似文献
8.
以淮北煤田二叠纪10、7、3煤层样品为研究对象,采用仪器中子活化法(INNA)测试了煤中42个伴生元素的含量,将其与华北石炭-二叠纪和中国煤中的伴生元素含量、范围进行了对比,并对伴生元素中主量元素含量和灰分的关系、微量元素的共生组合特点以及稀土元素含量与灰分的关系、稀土元素分布模式进行了初步分析。结果表明,对环境有影响的Ba、Co、Cr、Cu、Mo、Th、V、W、Zn、Ti元素在研究区煤中相对富集,Al、Ti、K、Na等元素与灰分有较好的相关性,Ca、Mg、Fe和灰分的相关性较差,稀土元素与灰分正相关且具有相似的分配模式,普遍存在Eu亏损现象,说明煤中伴生元素的主要来源是陆源物质。 相似文献
9.
The distribution of trace elements in the lower Eocene coal seam mined in the Yeniceltek, Kucukkohne and Ayridam coal mines from the Sorgun Basin was investigated in relation to ash content and maceral composition. The coal seam is mainly composed of huminite. In the present study, 35 samples from five seam sections were collected on the basis of megascopic characteristics. Results were determined using an energy dispersive polarised X-ray fluorescence (EDP-XRF) spectrometer on a whole-coal dry basis. Most of the major and trace elements studied are enriched in high-ash samples, while Ba, Br, Mn and W show relative enrichments in low-ash samples. Most of elements studied, such as Ga, Ce, La, Th, Nb, Rb, Zr, V, Cu, U, Pb, Sb, Cs, Sn, Cr, Se, Y and Zn, are primarily associated with mineral matter (clay minerals). Arsenic and a part of Zn, Se and Sb are probably concentrated in pyrites in the samples. Element concentrations show statistically significant negative correlations with many macerals and positive relationships with only attrinite that is mainly mixed with mineral matter (clay minerals and small quartz grains) in the samples. Nine trace elements (As, Cr, Mn, Ni, Pb, Sb, Se, Th and U), considered as potentially Hazardous Air Pollutants, are present in low to moderate concentrations. The mean values of trace element concentrations display relative enrichments in Se (2.8 ppm), Th (21 ppm) and W (26 ppm) in the investigated samples in comparison with other coals in the world. 相似文献
10.
Sujatha Dantu 《Environmental Earth Sciences》2014,72(4):955-981
Regional-scale variations in soil geochemistry were investigated with special reference to differences among soil groups and lithology in an area of 9,699 km2 in Medak district, Andhra Pradesh, India. The concentrations of 29 elements (major: Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P and trace: As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr) in 878 soil samples collected (557-topsoil, 321-subsoil) at a sampling density of 1 site/17 km2 from 557 sites representative of all the soil types present in studied area were determined, and their elemental composition are discussed. The baseline levels of these elements in soils are determined over different lithological units for the identification of anomalous values relative to these. For the first time, geochemical maps for Medak district are prepared on 1:50,000 scale and the lithogeochemical database generated provides information on the lateral and vertical distribution of elements in soil. The spatial variations in the distribution of elements reflect underlying geologic characteristics. Box-plots reveal that the concentration of most of the elements in soils were not strongly dependent on the soil group but the soil-geochemistry abruptly changes with the change in the soil parent materials indicating that the distribution of elements is mostly influenced by the bedrock lithology and other natural processes acting on them. For instance, the concentrations of Co, Cu, Fe, Mn, Ti, V and Zn are high in soils developed on basaltic terrain while the soils developed on granitic and gneissic terrain exhibit high elemental concentrations of K, Pb, Rb, Si, Th and Y. Alfisols had relatively high contents of elements while entisols had lower concentrations of most of the elements. The database can be used in the chemical characterisation of different geological units as well as applications in various environmental and agricultural fields. The results indicate that regional geology is an important determinant of soil geochemical baselines for soil pollution assessment and further emphasizes the importance of determining background levels locally. The defined baselines can be used to establish background values for future soil surveys. 相似文献
11.
12.
R. Kretz 《Geochimica et cosmochimica acta》1982,46(10):1979-1981
A crystal-growth model is proposed, which allows ions of a trace element to enter the Ca and Mg sites of dolomite in proportion to the size of the ions relative to that of Ca and Mg ions, and which assigns equal portions of the trace element to the Ca site of dolomite and the Ca site of associated calcite. The model produces calcite/dolomite distribution coefficients of 0.79 for Mn and 0.43 for Fe, which may be compared with 0.85 and 0.28 as observed in marble, and a distribution coefficient of 2.0 for Sr and Ba, which may be compared with observed values of 2.3 for Sr and 1.8 for Ba. 相似文献
13.
14.
Marcos A. E. Chaparro Mauro A. E. Chaparro P. Rajkumar V. Ramasamy Ana M. Sinito 《Environmental Earth Sciences》2011,63(2):297-310
This contribution constitutes a new study using magnetic parameters and trace element determinations of pollutants in river
sediments from the Tamil Nadu state. The Vellar River covers a total length of about 200 km and flows into the Bay of Bengal.
Sediment samples were collected at different sediment depths (up to 90 cm) from 12 sites to investigate their magnetic properties
(27 samples) and the contents of trace elements (21 out of 27 samples) along the river; as well as to perform magnetic studies
for various grain size fractions (16 sub samples). The magnetic results of magnetic susceptibility and remanent magnetizations
suggest that the magnetic signal of these sediments is controlled by ferrimagnetic minerals magnetite-like minerals and a
minor contribution of antiferromagnetic carriers (such as hematite minerals). Detailed studies of selected samples showed
a higher magnetic concentration in finer grain-sized fractions and a slightly different magnetic mineralogy. Magnetic concentration-dependent
parameters evidenced high values, which, together with the background values, allowed us to identify magnetic enhancement
at some sites. The Pearson correlation and multivariate statistical studies (Principal Component Analysis, Canonical Correlation
Analysis) supported the relationship between the magnetic and chemical variables; in particular, magnetic susceptibility,
anhysteretic and isothermal remanent magnetization are closely correlated to Co, Cr, Cu, Fe, V, Zn, and the pollution load
index. In addition, Principal Coordinate Analysis and fuzzy C-means cluster analysis allowed us to make a classification and
to perform a magnetic-chemical characterization of the data into four groups, thereby identifying critical (possibly polluted)
sites from the Vellar River. 相似文献
15.
16.
Dangyu SONG Junying ZHANG Chuguang ZHENG 《中国地球化学学报》2006,25(B08):176-177
Coals from Guizhou Province, Southwest China, attract many researchers' attention for their high concentrations of hazardous trace elements, sulphur and mineral components. Trace elements in coals have diverse modes of occurrence that will greatly influence their migration in the process of coal preparation. Mode of occurrence is also important in determining the partitioning during coal combustion. The coal floatation test by progressive release was used to study the migration of trace elements and mineral components in the process of froth floatation. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the absolute concentrations of trace elements including As, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn in the parent coals and the floatation fractions. Precise determination of the mineral matter percentage in coals was obtained by low-temperature ashing. The mineral compositions in coals were quantified using Rietveld-based X-ray diffraction analysis package on low-temperature ash. Scanning electron microscope equipped with energy dispersive X-ray detector was used to provide information on the forms of occurrence of mineral components in coal. Five floatation fractions were obtained from the pulverized coal samples. The contents of trace elements and mineral components decrease from the first tailings to the last cleaned coal. The concentrations of trace elements and mineral components in parent coals and different floatation samples show that trace elements and mineral components are mainly concentrated in the first tailings samples. Nearly 60% of mineral components are enriched in the first tailings, whereas less than 1.3% remains in the cleaned coal. The ratio of sixteen trace elements concentrations in the first tailings to the corresponding concentrations in the cleaned coal ranges from 1.6 to 22.7. Quantitative mineralogical analysis results using the full-profile general structure analysis system (GSAS) showed that the main compositions of LTA include quartz, calcite, kaolinite, pyrite, chlorite, montmorillonite, illite, anatase and pyrite. 相似文献
17.
基于冈瓦纳大陆主要板块冰川沉积地层的对比,并结合古地磁方法对冈瓦纳大陆古生代主要冰期的冰盖分布范围进行再造,认为冈瓦纳大陆在古生代主要经历了3次较大的冰期,分别是:(1)晚奥陶世—早志留世冰期、(2)晚泥盆世—早石炭世冰期、(3)晚石炭世晚期—二叠纪冰期。晚奥陶世—早志留世冰期冰盖主要分布在西冈瓦纳大陆;晚泥盆世—早石炭世冰期冰盖主要分布在南美板块;晚石炭世晚期—二叠纪冰期冰盖在冈瓦纳大陆主要组成板块上均有分布,且冰盖存在时间最长,分布范围最广。3次主要冰期冰盖的中心点位置均靠近南极点,但并不完全重合,可认为气温是影响冈瓦纳大陆上冰盖分布的主要因素,但不是唯一的因素,冰盖的分布范围还受到盆地动力学、地形、冰川属性以及其他具体因素的影响。同时结合在保山地块的野外工作以及前人的研究成果,认为冈瓦纳大陆的3次冰期中,仅晚石炭世晚期—二叠纪冰期对中国的陆块产生了影响,且主要影响了中国的西南陆块群(包括保山地块、腾冲地块、拉萨地块、羌塘地块等)。 相似文献
18.
Chenlin CHOU 《中国地球化学学报》2006,25(B08):82-82
Hazardous air pollutants, including compounds of sulfur and toxic trace elements, are emitted during coal combustion. Geochemical studies of these constituents in coals provide information about their species, regional distribution and origins. The data are useful in understanding the cause and scope of human health problems related to these hazardous elements and in designing preventive or remedial measures. Sulfur in coal is a problem because sulfur dioxide emitted during coal combustion is a main source of acid rain. The sulfur isotopic evidence shows that sulfur in low-sulfur coal is derived primarily from parent plant materials. Sulfur enrichment in medium- and high-sulfur coals is caused by the sulfate in seawater that flooded the peat swamp during coal formation. The sulfur content of a coal is controlled primarily by the depositional environment of coal seams. Only pyritic sulfur can be removed by physical coal cleaning processes (coal preparation). Sulfur dioxide emission can be reduced using clean coal technologies, such as flue-gas desulfurization, fluidized-bed combustion, and integrated gasification and combined cycle. 相似文献
19.
20.
P. K. Banerjee 《Mineralium Deposita》1975,10(2):177-188
The results of spectrographic analysis of 500 bauxite samples from 25 deposits show that the distribution of Cr, V, Zr and Ga is completely randomised in accordance with the model of complex, polycyclic sequence of bauxite genesis, deduced by other workers on the basis of mineralogical and major element studies. The same process of residual weathering, which generates a systematic enrichment and fractionation of major insoluble elements causes a random dispersion, notwithstanding the overall enrichment, of the insoluble trace elements due to seasonal variations in pH and in direction of movement of the pore water. 相似文献