首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The Meteoritical Bulletin, Number 74, contains listings for 190 meteorites, including 112 from North Africa, 63 from Antarctica and eight from Australia and six from the U.S. Among the meteorites described are 15 type 3 ordinary chondrites, most notably Roosevelt County 075 which is the lowest petrologic type H chondrite known to date, two very similar ureilites (Nova 1 and Nullarbor 010), a howardite (Old Homestead 001), a CK3 chondrite (Camel Donga 003), a CV3 chondrite (Denman 002) and a major new CR chondrite (Acfer 311 and 10 meteorites with which it is paired).  相似文献   

2.
Abstract— The ten specimens of the paired Acfer 059/El Djouf 001 CR2 chondrite contain abundant lithic fragments which we refer to as dark clasts. Petrological and mineralogical studies reveal that they are not related to the CR2 host meteorite but are similar to dark clasts in other CR2 chondrites. Dark clasts consist of chondrule and mineral fragments, phyllosilicate fragments and clusters, magnetite, sulfides and accessory phases, embedded into a very fine-grained, phyllosilicate-rich matrix. Magnetite has morphologies known from CI chondrites: spherules, framboids and platelets. Average abundances of major elements in the dark clasts are mostly in the range of both CR and CV chondrites, but strong depletions in Na and S are apparent. Oxygen isotopic compositions of two dark clasts suggest relationships to type 3 carbonaceous chondrites and dark inclusions in Allende. The dark clasts are clearly different in texture and mineralogical composition from the host matrix of Acfer 059/El Djouf 001. Therefore, these dark clasts are xenoliths and are quite unlike the Acfer 059/El Djouf 001 CR2 host meteorite. We suggest that dark clasts accreted at the same time with all other components during the formation of Acfer 059/El Djouf 001 whole rock.  相似文献   

3.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

4.
Abstract– Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca‐, Al‐rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite‐bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine‐grained, porous, Ti‐rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti‐poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO‐rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite‐bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5–1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO‐bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO‐rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.  相似文献   

5.
Short time-scale photometric properties of eight faint cataclysmic variable (CV) stars are presented. Nova Carinae 1895 (RS Car) has a photometric modulation at 1.977 h that could be either an orbital or a superhump period. Nova Carinae 1948 (V365 Car) shows flickering, but any orbital modulation has a period in excess of 6 h. The nova-like variable and X-ray source V436 Car has an orbital modulation at   P orb= 4.207 h  , no detectable period near 2.67 h (which had previously given it a possible intermediate polar classification), and dwarf nova oscillations (DNOs) at ∼40 s. Nova Crucis 1936 (AP Cru) has a double-humped ellipsoidal modulation at   P orb= 5.12 h  and a stable modulation at 1837 s characteristic of an intermediate polar. Nova Chamaeleontis 1953 (RR Cha) is an eclipsing system with   P orb= 3.362 h  , but at times shows negative superhumps at 3.271 h and positive superhumps at 3.466 h. In addition it has a stable period at 1950 s, characteristic of an intermediate polar. BI Ori is a dwarf nova that we observed at quiescence and outburst without detecting any orbital modulation. CM Phe is a nova-like variable for which we confirm the value of   P orb= 6.454 h  found by Hoard, Wachter & Kim-Quijano . We have identified the remnant of Nova Sagittarii 1931 (V522 Sgr) with a flickering source ∼2.2 mag fainter than the previously proposed candidate (which we find to be non-variable).  相似文献   

6.
Acfer 217-A new member of the Rumuruti chondrite group (R)   总被引:1,自引:0,他引:1  
Abstract— Previously, three meteorites from Australia and Antarctica were described as a new chondritic “grouplet” (Carlisle Lakes, Allan Hills (ALH) 85151, Yamato (Y) ?75302; Rubin and Kallemeyn, 1989). This grouplet was classified as the “Carlisle Lakes-type” chondrites (Weisberg et al., 1991). Recently, one Saharan sample and four more Antarctic meteorites were identified to belong to this group (Acfer 217, Y-793575, Y-82002, PCA91002, PCA91241). The latter two are probably paired. With the meteorite Rumuruti, the first fall of this type of chondrite is known (Schulze et al., 1994). We report here on the Saharan meteorite Acfer 217 which has chemical and mineralogical properties very similar to Rumuruti and Carlisle Lakes. All eight members of this group, Rumuruti, Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, and the paired samples PCA91002 and PCA91241 justify the introduction of a new group of chondritic meteorites, the Rumuruti meteorites (R). Acfer 217 is a regolith breccia consisting of up to cm-sized clasts (~33 vol%) embedded in a fine-grained, well-lithified clastic matrix. The most abundant mineral is olivine (~72 vol%), which has a high Fa-content of 37–39 mol%. The major minerals (olivine, low-Ca pyroxene, Ca-pyroxene, and plagioclase) show some compositional variability indicating a slightly unequilibrated nature of the meteorite. Considering the mean olivine composition of Fa37.8 ± 5.7, a classification of Acfer 217 as a R3.8 chondrite would result; however, Acfer 217 is a regolith breccia consisting of clasts of various petrologic types. Therefore, we suggest to classify Acfer 217 as a R3–5 chondrite regolith breccia. The bulk meteorite is very weakly shocked (S2). The bulk composition of Acfer 217 and other R-meteorites show that the R-meteorites are basically chondritic in composition. The pattern of moderately volatile elements is unique in R chondrites; Na and Mn are essentially undepleted, similar to ordinary chondrites, while Zn and Se contents are similar to concentrations in CM chondrites. The oxygen isotopic composition in Acfer 217 is similar to that of Rumuruti, Carlisle Lakes, ALH 85151, and Y-75302. In a δ17O vs. δ18O-diagram, the R-meteorites form a group well resolved from other chondrite groups. Acfer 217 was a meteoroid of common size with a radius between 15–65 cm and with a single stage exposure history. Based on 21Ne, an exposure age of about 35 Ma was calculated.  相似文献   

7.
Abstract Solar noble gases He, Ne, Ar and Kr implanted in the H3–6 meteorite regolith breccia Acfer 111 agree in their elemental composition with that in present-day solar wind and, except for a 25% deficit of 4He, also with adopted solar abundances. The presence of such unfractionated solar gases makes Acfer 111 unique (until now). Closed system stepped etching releases noble gases that can be explained as mixtures of two distinct types of He, Ne, and Kr of isotopic compositions as they have been derived previously from meteorites and lunar samples that contain heavily fractionated solar gases. Since the same putative end members, ascribed to the solar wind (SW) and supra-thermal solar energetic particles (SEP), are also present in Acfer 111, we argue that these end members represent two truly independent components. We discount the possibility that one isotopic composition derived from the other by diffusion of the gases within, or upon their release from, their host phases. The isotopic signatures of noble gases in Acfer 111 agree with those in a lunar ilmenite of young antiquity ?100 Ma) but are in disagreement with the noble gases in lunar ilmenite 79035 of 1–2 Ga antiquity. Systematic changes are discussed of the nuclide abundance ratios as etching proceeds; they are ascribed to differences in trapping efficiency and in penetration depth of the different noble gas ion species upon their implantation.  相似文献   

8.
Abstract– We used the electron microprobe to study matrix in the ungrouped type 3.0 carbonaceous chondrite Acfer 094 using 7 × 7‐point, focused‐beam arrays; data points attributable to mineral clasts were discarded. The grid areas show resolvable differences in composition, but differences are less pronounced than we observed in studies of CR2 LaPaz Icefield (LAP) 02342 (Wasson and Rubin [2009]) and CO3.0 Allan Hills A77307 (Brearley [1993]). A key question is why Acfer shows an anomalously uniform composition of matrix compared with these other carbonaceous chondrites. Both whole‐rock and matrix samples of Acfer 094 show enhancements of Ca and K; it appears that these reflect contamination during hot desert weathering. By contrast, the whole‐rock abundance of Na is low. Although weathering effects are responsible for some fractionations, it appears that nebular effects are also resolvable in matrix compositions in Acfer 094. As with LAP 02342, we infer that the observed differences among different areas were inherited from the solar nebula and may have been carried by porous chondrules that experienced low (about 20%) degrees of melting. Acfer 094 has been comminuted by one or more impact events that may also have caused volatile loss. Thus, despite preserving evidence (e.g., an exceptionally high content of presolar SiC) implying a high degree of pristinity, Acfer 094 is far from pristine in other respects. This evidence of comminution and an O‐isotopic composition similar to values measured in metamorphosed CM chondrites suggest that Acfer was hydrated before being outgassed by the inferred impact event. Convection within the plume associated with the impact event probably also contributed to the homogenization of the Acfer 094 matrix.  相似文献   

9.
Abstract— The Saharan meteorite Acfer 094 is a unique type of carbonaceous chondrite. Mineralogical and petrological considerations and O isotopes are unable to distinguish unambiguously between a CO3 vs. CM2 classification. The other important light elements, C and N, have systematics that do not match any previously recognised meteorite group. Particularly important in this respect is the very low C/N ratio and δ13C of the macromolecular C. Acfer 094 has more diamond and SiC, especially X type grains, than any other specimen studied, suggesting minimal thermal or aqueous processing to decrease its very primitive status.  相似文献   

10.
The Antarctic carbonaceous chondrites DOM 08004 and DOM 08006 have been paired and classified as CO3.0s. There is some uncertainty as to whether they should be paired and whether they are best classified as CO chondrites, but they provide an opportunity for the study of refractory inclusions that have not been modified by parent body processes. In this work, refractory inclusions in thin sections of DOM 08004 and 08006 are studied and compared with inclusions in ALHA77307 (CO3.0) and Acfer 094 (C3.0, ungrouped). Results show that the DOM samples have refractory inclusion populations that are similar to each other but not typical of CO3 chondrites; main differences are that the DOM samples are slightly richer in inclusions in general and, more specifically, in the proportions of grossite‐bearing inclusions. In DOM 08004 and DOM 08006, 12.4% and 6.6%, respectively, of the inclusions are grossite‐bearing. This is higher than the proportion found in Acfer 094 (5.2%), whereas none were found in ALHA77307. Like those in Acfer 094, DOM inclusions are small (mostly <100 μm across) and fine‐grained, and thin rims of aluminous diopside±melilite are very common. Also like Acfer 094, most phases in the DOM inclusions have FeO contents higher than expected for primary refractory phases. In addition to typical inclusions, some unusual ones were found in DOM 08004, including a perovskite‐rich one with a rare, recently reported Sc‐, Al‐oxide and davisite; a very grossite‐rich inclusion with a small, hibonite‐rich core enclosed in a grossite mantle; and a relict, grossite‐rich inclusion enclosed in an Al‐rich chondrule. The CAI populations in the DOM samples are similar to each other and, based on grossite abundances, FeO enrichments and occurrences of rims are more Acfer 094‐like than CO3‐like. An earlier history on an FeO‐rich parent was previously favored over nebular equilibria or in situ reactions to account for FeO enrichments in CAIs in the otherwise pristine chondrite Acfer 094, and a similar history is indicated for the DOM CAIs. Acfer 094, DOM 08004 and 08006 might best be classified as a new subgroup of CO3 chondrites.  相似文献   

11.
Abstract— A database of magnetic susceptibility (χ) measurements on different non‐ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well‐grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)‐88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.  相似文献   

12.
Abstract— A transmission electron microscope (TEM) study of three coarse-grained Type A Ca, Al-rich inclusions (CAIs) from Allende, Acfer 082 and Acfer 086 (all CV3 chondrites) was performed in order to decipher their origin and effects of possible metamorphism. The constituent minerals of the CAIs are found to exhibit very similar microstructural characteristics in each of the inclusions studied. In general, the minerals show a well-developed equilibrium texture with typical 120° triple junctions. Melilites are clearly considerably strained and characterized by high dislocation densities up to 3 × 1011 cm?2. The dislocations have Burgers vectors of [001], [110] or [011] and often form subgrain boundaries subparallel {100}. Melilite in the Allende CAI additionally contains thin amorphous lamellae mostly oriented parallel to {001}. Fassaite (Al-Ti-diopside) is almost featureless even on the TEM scale. Only a few subplanar dislocation walls composed of dislocations with Burgers vectors [001] and 1/2 [110] were detected. Although enclosed within the highly strained melilites, the euhedral spinels contain only low dislocation densities (<2 × 104 cm?2). In the Allende CAI, spinels were found twinned on {111}. Perovskite is also characterized by a low number of linear lattice defects. All grains possess orthorhombic symmetry and are commonly twinned according to a 90° rotation around [101]. Many crystals exhibit typical domain structures as well as curved twin walls where two orthogonal sets intersect. In addition to the mineral phases described above, tiny inclusions of the simple oxides CaO and TiO2 were found within melilite (CaO), spinel (CaO, TiO2) and perovskite (CaO, TiO2). Based on these observations, it is assumed that at the beginning of the formation of the CAIs a condensed solid precursor was present. Euhedral spinels poikilitically enclosed within melilites suggest that this solid aggregate was then molten. If the pure oxides represent relict condensates, their presence proves that this melting was incomplete. While still plastic, the CAIs were shocked by microimpacts causing the high dislocation densities in melilite as well as diaplectic melilite glass and twinned spinels in the Allende CAI. In Acfer 082 and 086, the deformation took place at elevated temperatures, preventing the solid phase transition and mechanical twinning. The absence of linear lattice defects in spinel, fassaite and perovskite most probably reflects inhomogeneous pressure distribution in the polycrystalline CAI as well as the different strengths of the minerals. According to cooling-rate experiments on perovskite by Keller and Buseck (1994), the dominating (101) twins in the CAI perovskites point to cooling rates ≤50 °C/min. Finally, after crystallization of the CAI was complete, mild thermal metamorphism caused the formation of subgrain boundaries, 120° triple junctions and chemical homogenization of the melilites.  相似文献   

13.
Among the many ungrouped meteorites, Acfer 370, NWA 7135, and El Médano 301—probably along with the chondritic inclusion in Cumberland Falls and ALHA 78113—represent a homogeneous grouplet of strongly reduced forsterite‐rich chondrites characterized by common textural, chemical, mineralogical, and isotopic features. All of these meteorites are much more reduced than OCs, with a low iron content in olivine and low‐Ca pyroxene. In particular, Acfer 370 is a type 4 chondrite that has olivine and low‐Ca pyroxene compositional ranges of Fa 5.2–5.8 and Fs 9.4–33.4, respectively. The dominant phase is low‐Ca pyroxene (36.3 vol%), followed by Fe‐Ni metal (16.3 vol%) and olivine (15.5 vol%); nevertheless, considering the Fe‐oxyhydroxide (due to terrestrial weathering), the original metal content was around 29.6 vol%. Finally, the mean oxygen isotopic composition Δ17O = +0.68‰ along with the occurrence of a silica phase, troilite, Ni‐rich phosphides, chromite, and oldhamite confirms that these ungrouped meteorites have been affected by strong reduction and are different from any other group recognized so far.  相似文献   

14.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

15.
Abstract— We have studied Pb‐isotope systematics of chondrules from the oxidized CV3 carbonaceous chondrite Allende. The chondrules contain variably radiogenic Pb with a 206Pb/204Pb ratio between 19.5–268. Pb‐Pb isochron regression for eight most radiogenic analyses yielded the date of 4566.2 ± 2.5 Ma. Internal residue‐leachate isochrons for eight chondrule fractions yielded consistent dates with a weighted average of 4566.6 ± 1.0 Ma, our best estimate for an average age of Allende chondrule formation. This Pb‐Pb age is consistent with the range of model 26Al‐26Mg ages of bulk Allende chondrules reported by Bizzarro et al. (2004) and is indistinguishable from Pb‐Pb ages of Ca‐Al‐rich inclusions (CAIs) from CV chondrites (4567.2 ± 0.6 Ma) (Amelin et al. 2002) and the oldest basaltic meteorites. We infer that chondrule formation started contemporaneously with or shortly after formation of CV CAIs and overlapped in time with formation of the basaltic crust and iron cores of differentiated asteroids. The entire period of chondrule formation lasted from 4566.6 ± 1.0 Ma (Allende) to 4564.7 ± 0.6 Ma (CR chondrite Acfer 059) to 4562.7 ± 0.5 Ma (CB chondrite Gujba) and was either continuous or consisted of at least three discrete episodes. Since chondrules in CB chondrites appear to have formed from a vapor‐melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated (Krot et al. 2005), there were possibly a variety of processes in the early solar system occurring over at least 4–5 Myr that we now combine under the umbrella name of “chondrule formation.”  相似文献   

16.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

17.
Abstract— This Meteoritical Bulletin is again dominated by meteorite finds from hot and cold deserts: 99 from the Nullarbor, 12 from the Sahara, and 35 from Antarctica. Besides 161 ordinary chondrites, it lists 5 irons (Cotton, Hidden Valley, Miles, Tagounite, Tres Castillos), 2 ureilites (FRO90168, Hughes 009), 1 howardite (ALH 88135), 1 CV3 (Axtell), 1 CK4 (Sleeper Camp 006), and 2 enstatite chondrites (ALH 88070, Forrest 033). Three of the meteorites are falls.  相似文献   

18.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

19.
Abstract– We used instrumental neutron activation analysis and petrography to determine bulk and phase compositions and textural characteristics of 15 carbonaceous chondrites of uncertain classification: Acfer 094 (type 3.0, ungrouped CM‐related); Belgica‐7904 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Wisconsin Range (WIS) 91600, Dhofar 225, and Yamato‐86720); Dar al Gani (DaG) 055 and its paired specimen DaG 056 (anomalous, reduced CV3‐like); DaG 978 (type 3 ungrouped); Dominion Range 03238 (anomalous, magnetite‐rich CO3.1); Elephant Moraine 90043 (anomalous, magnetite‐bearing CO3); Graves Nunataks 98025 (type 2 or type 3 ungrouped); Grosvenor Mountains (GRO) 95566 (anomalous CM2 with a low degree of aqueous alteration); Hammadah al Hamra (HaH) 073 (type 4 ungrouped, possibly related to the Coolidge‐Loongana [C‐L] 001 grouplet); Lewis Cliff (LEW) 85311 (anomalous CM2 with a low degree of aqueous alteration); Northwest Africa 1152 (anomalous CV3); Pecora Escarpment (PCA) 91008 (anomalous, metamorphosed CM); Queen Alexandra Range 99038 (type 2 ungrouped); Sahara 00182 (type 3 ungrouped, possibly related to HaH 073 and/or to C‐L 001); and WIS 91600 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Belgica‐7904, Dhofar 225, and Y‐86720). Many of these meteorites show fractionated abundance patterns, especially among the volatile elements. Impact volatilization and dehydration as well as elemental transport caused by terrestrial weathering are probably responsible for most of these compositional anomalies. The metamorphosed CM chondrites comprise two distinct clusters on the basis of their Δ17O values: approximately ?4‰ for PCA 91008, GRO 95566, DaG 978, and LEW 85311, and approximately 0‰ for Belgica‐7904 and WIS 91600. These six meteorites must have been derived from different asteroidal regions.  相似文献   

20.
Abstract— We have used a variety of complementary microanalytical techniques to constrain the mineralogy, trace‐element distributions, and oxygen‐isotopic compositions in a 50 × 50 μm area of Acfer 094 matrix. The results reveal the exceptional mineralogical and compositional heterogeneity of this material at the sub‐μm level. We observe μm‐scale and sub‐μm grains with elemental associations suggesting feldspar, metal with widely varying Ni contents, and a Cr‐Fe alloy (in addition to forsterite, pyroxene, sulfide, ferrihydrite, and amorphous groundmass previously described). A new class of μm‐scale CAI (μCAI) is also observed, which show sub‐μm compositional zoning, and a range of oxygen isotopic compositions. Unlike the larger CAIs in Acfer 094, which are uniformly 16O‐enriched, two of the three μCAIs we analyzed are isotopically normal. We also observed a Li‐rich hotspot that detailed analysis by ToF‐SIMS suggests may be a LiCr‐oxide grain. Within the resolution of the NanoSIMS, this grain has isotopically normal Li. Finally, in our 50 × 50 μm area, we positively identified a presolar grain that is the most 18O‐rich silicate found so far in meteorites. The grain may originate from an asymptotic giant branch (AGB) star, or more likely, a supernova. In line with previous TEM studies (Greshake 1997), we find no evidence for clastic material (e.g., fragmental chondrules) in the matrix of Acfer 094: although the matrix is volatile‐depleted, this depletion does not appear to result from dilution of a primordial starting material with (depleted) chondrule fragments. Assuming that matrix experienced the depletion event, our data on the detailed mineralogy of Acfer 094 are currently equivocal in constraining the nature of that event. We observe carrier phases for several elements consistent with conditions approaching equilibrium condensation; however, the presence of an amorphous groundmass is suggestive of more rapid cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号