首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 3 毫秒
1.
The pattern of volcanic tremor accompanying the 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusing on the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.  相似文献   

2.
Soil CO2 concentration data were collected periodically from July 2001 to June 2005 from sampling site grids in two areas located on the lower flanks of Mt. Etna volcano (Paternò and Zafferana Etnea–Santa Venerina). Cluster analysis was performed on the acquired data in order to identify possible groups of sites where soil degassing could be fed by different sources. In both areas three clusters were recognised, whose average CO2 concentration values throughout the whole study period remained significantly different from one another. The clusters with the lowest CO2 concentrations showed time-averaged values ranging from 980 to 1,170 ppm vol, whereas those with intermediate CO2 concentrations showed time-averaged values ranging from 1,400 to 2,320 ppm vol, and those with the highest concentrations showed time-averaged values between 1,960 and 55,430 ppm vol. We attribute the lowest CO2 concentrations largely to a biogenic source of CO2. Conversely, the highest CO2 concentrations are attributed to a magmatic source, whereas the intermediate values are due to a variable mixing of the two sources described above. The spatial distribution of the CO2 values related to the magmatic source define a clear direction of anomalous degassing in the Zafferana Etnea–Santa Venerina area, which we attribute to the presence of a hidden fault, whereas in the Paternò area no such oriented anomalies were observed, probably because of the lower permeability of local soil. Time-series analysis shows that most of the variations observed in the soil CO2 data from both areas were related to changes in the volcanic activity of Mt. Etna. Seasonal influences were only observed in the time patterns of the clusters characterised by low CO2 concentrations, and no significant interdependence was found between soil CO2 concentrations and meteorological parameters. The largest observed temporal anomalies are interpreted as release of CO2 from magma batches that migrated from deeper to shallower portions of Etna’s feeder system. The pattern of occurrence of such episodes of anomalous gas release during the observation period was quite different between the two studied areas. This pattern highlighted an evident change in the mechanism of magma transport and storage within the volcano’s feeder system after June 2003, interpreted as magma accumulation into a shallow (<8 km depth) reservoir.  相似文献   

3.
本文根据季节转换前后副高脊面附近经向温度梯度变号的本质,利用相关分析和合成分析等方法研究了季节转换年际变化与外部影响因子的联系. 结果表明,冬春季青藏高原热状况和ENSO(El Nio/Southern Oscillation,厄尔尼诺/南方涛动)是决定亚洲季风区季节转换年际变化的主要因素. 当冬、春季海温呈现El Nio异常时,Walker环流减弱,于是西太平洋暖池区对流活动受到抑制,而赤道东太平洋对流活动加强则强迫赤道印度洋地区产生绝热下沉运动,使得印度洋地区大气偏暖,结果增大了南北向温度梯度,季节转换往往偏晚. 反之,季节转换偏早. 初春高原上空对流层中高层的气温异常对于判断季节转换迟早有很好的指示意义.  相似文献   

4.
In this study the geodynamical scenario along with concepts of mantle plume and mobile belts is utilized to show that most of the existing and potential high thermal regions fall along the (mobile arms affected by the outburst and) traces of mantle plumes. Effects of channeling and partitioning of thermomagmatic flux (TMF) due to these mantle plumes along the mobile belts, particularly near the triple junctions, can be seen in the form of high heat flow and presence of hot springs. Triple junctions manifest over the Indian lithosphere are: Kutch-Cambay, Narmada Son-Godavari, Tapi-Mahanadi, Tapi-Damodar, Pondicherry region, Gulf of Mannar and SW corner of the subcontinent (off-shore), etc. Apart from mobile belts, the deltaic regions of Krishna, Godavari, Ganga, Cauvery, Narmada-Tapi and Indus, etc., are also posses higher level of thermal anomalies as these regions seem to have been substantially influenced by outbursts and traces of Reunion, Kerguelen, Marion and Crozet hotspots. This is reflected from the correlation between plume affected mobile belts and high heat flow regions, large number of hot springs, anomalous electrical conductivity and also deformation or seismicity. Such correlation can be seen along Cambay, west coast trend, Narmada-Son lineament zone, Godavari-Damodar grabens and Bengal basin. Himalayan belt being ongoing collision zone, thermal anomalies are identified in the form of hot springs along the Himalayan arc. At some locations, which might be junction of tectonic trends, there exist significantly large thermal outputs. Puga in Himalayan region is one such example, as seen from high heat flow (max. 468 mW m− 2) and geothermal gradient (234 °C/km max.). Similarly, Tatapani in Narmada Son Lineament (NSL) region is another such example. The present study discusses the correlation between thermal reservoirs identified by magnetotelluric (MT) study results and plume activity and suggests the need for systematic and detailed MT investigations along plume activated mobile strips in other regions to search for geodynamical history and geothermal resources.  相似文献   

5.
本文首先从电子密度及电子温度的输运方程和考虑自作用时的电磁波波动方程出发, 利用简正模展开的方法推导出泵波在反射区域激发出热自聚焦不稳定性(thermal self-focusing instabilities, TSFI)所需电场阈值以及其增长率的完整数学表达式, 并估算了TSFI激发阈值及所对应的有效辐射功率(ERP)的量级.随后利用三维垂直加热的理论模型, 结合国际参考电离层(IRI-2012)和中性大气模型(MSIS-E-00)给出的背景参数, 数值模拟了大功率高频泵波加热电离层时泵波反射区域电子密度及电子温度因TSFI而产生的变化及发展的过程, 并对比分析了不同背景参数对较热效果的影响.结果表明:当高频泵波的加热阈值达到或超过百毫伏每米的量级时, 即可激发TSFI, 发展出大尺度电子密度及温度不均匀体, 这些不均匀体内的密度耗空约为4%~10%, 而电子温度剧烈增长, 到达背景温度值的1.6~2.1倍;且在相当的加热条件下, 背景电子温度越低、电子密度越小, 加热效果越显著;电子密度及电子温度的扰动幅度随着加热时间的推移而逐渐减小, 即扰动逐渐趋于饱和, 且电子温度要快于电子密度达到饱和状态.本文还对泵波反射高度处的电子密度及电子温度变化率进行采样并求得其功率谱密度, 分析结果表明:TSFI发展出的大尺度不均匀体满足幂律谱结构, 谱指数随着加热的进行逐渐趋于稳定, 白天与夜间的幂律谱指数区别不大, 但电子密度与电子温度的幂律谱有所区别.  相似文献   

6.
Middle–Late Miocene age siliceous formations outcropping along the northwestern side of Honshu Island are considered prospective source rocks for hydrocarbons. An analysis of geophysical, sedimentological, and geochemical properties is essential to evaluate the formations' source potential, and to understand the factors that determined the accumulation and preservation of organic matter. This study investigates the Middle–Late Miocene geological record of the Tsugaru back‐arc basin, located in the western part of Aomori prefecture, through an analysis of a 200 m long portion of a core from the DTH27‐1 well; this core is composed of the diatomaceous siltstones of the Akaishi Formation and the siliceous mudstones of the Odoji Formation. Sedimentological and geophysical characterization showed that the Akaishi Formation's diatomaceous siltstones are mostly massive and bioturbated, have low magnetic susceptibility, and demonstrate moderate natural radioactivity. Although the Odoji Formation's siliceous mudstones are massive, they have exceedingly low magnetic susceptibility and high natural radioactivity. Geochemical data from a Rock‐Eval Pyrolysis such as total organic carbon and generative potential (S1 + S2) revealed that, in the Tsugaru area, only the Odoji Formation is a likely prospective source rock for hydrocarbons. On the other hand, Tmax values indicate that both the formations are thermally immature for generating hydrocarbons. The difference between the Akaishi and Odoji Formation in the sedimentological facies, in terms of the degree of bioturbation and the organic carbon content, indicates variations in lithological properties, such as porosity and grain size; moreover, this difference indicates a variation in the paleo‐oxygenation of bottom waters, with the transition from oxygen‐deficient conditions in the Middle Miocene to the more oxygenated conditions in the Late Miocene. Both the lithological and paleo‐environmental factors possibly influenced the organic richness in the two formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号