首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of field measurements, modelling and laboratory experiments was used to evaluate the potential impact of sediment resuspension on phosphorus (P) dynamics. The study was carried out in two adjacent shallow coastal lakes (Lake Honda and Lake Nueva) which, due to their geographic proximity (only 200 m apart), are subject to equal meteorological forcing and represent ideal systems to study how morphometry and sediment properties relate to wind events. The focusing factors (a measure of the fluxes of sediment into the water column through resuspension) estimated by comparing settling fluxes measured in surface sediment traps with those measured in bottom traps, were significantly larger (approximately 34% larger) in Lake Honda (LH; 1.18) than in Lake Nueva (LN; 0.88). Our model estimates of resuspension fluxes (E) were also ca. 40% larger in LH than in LN, in agreement with the observed focusing factors. The larger resuspension fluxes encountered in LH, in comparison with LN, can mainly be explained by differences in lake morphometry. Still, they could arise from differences in grain size distribution or in benthic algae concentration encountered in the lake sediments. By means of adsorption experiments in the laboratory, we show that resuspension events will have different effects on P-dynamics in LH and LN. While the resuspended material from LH tends to adsorb phosphate (PO4 3−), removing it from the water column, in LN the resuspended sediments tend to increase the availability of PO4 3− in solution. These differences arise from (1) higher concentrations of PO4 3− in water in LH compared to LN; and (2) larger PO4 3−adsorption capacity of the LH sediments as a result of the more abundant iron oxyhydroxides and clay.  相似文献   

2.
3.
太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算   总被引:5,自引:1,他引:4  
胡开明  王水  逄勇 《湖泊科学》2014,26(2):191-199
太湖是一个大型浅水湖泊,湖湾、沿岸及湖心等区域受地形影响,湖流结构及水土界面水力要素均有显著差异.针对目前对不同湖区底泥再悬浮规律差异性研究的缺失,本研究选取了3个具有代表性的点采集太湖底泥,采用矩形水槽开展底泥再悬浮模拟实验,并结合太湖二维水量水质模型及太湖全年实测数据,建立了不同湖区底泥再悬浮通量与风速之间的定量关系;通过室内静沉降实验,得到了静沉降通量与风速的相关关系;最后将底泥再悬浮实验结果参数化应用于太湖二维水量水质模型中,并对底泥悬浮沉降过程进行分解和概化,估算太湖全年内源释放量.结果表明:太湖每日的内源释放量受风速影响显著,和风速变化趋势较为接近,太湖全年进入水体的净底泥量有47.81×104t,夏季最大,冬季次之;就营养物质释放量而言,COD约为2.06×104t、总氮约为1149.05 t、总磷约为564.35 t,其中秋季营养物质释放量最小,夏季最大.  相似文献   

4.
This study investigates the consequences of flocculation for sediment flux in glacier‐fed Lillooet Lake, British Columbia based on density, fractal dimension, in situ profiles of sediment concentration and size distribution, and settling velocity equations presented in the literature. Sediment flux attributed to macroflocs during the late spring and summer accounts for a significant portion of sediment flux in the lake, equivalent to at least one‐quarter of the average annual sediment flux. Fine sediment is reaching the lake floor faster in flocs than occurs if settling as individual grains. This flux varies both spatially and temporally over the observation period, suggesting a link between deposition via flocculation and the properties of bottom sediments. Macrofloc flux increased through June, reached a peak during July, and then declined into August. Macrofloc flux was greatest in the distal end of the first basin, approximately 10 km from the point of inflow. Relatively high excess densities (~0·1 g cm–3 at 500 µm) for flocs in situ are consistent with a composition dominated by inorganic primary particles. Microlaminations within Lillooet Lake varves have been linked by earlier workers to discharge events, and the action of turbidity currents, emanating from the Lillooet River. While turbidity currents undoubtedly occur in Lillooet Lake, these results demonstrate flocculation as an adjunct process linking discharge, lake level, macrofloc flux, bulk density and microlaminations. In situ measurements of sediment settling velocity in glacier‐fed lakes are required to better constrain flux rates, and permit comparison between flocculation in lacustrine environments with existing studies of estuarine, marine and fluvial flocculation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
It was observed that in some closed inland lakes sediment transport was dominated by wind-induced currents, and the sediment resuspension was primarily driven by wind-induced waves. This paper presents the development and application of a three-dimensional numerical model for simulating cohesive sediment transport in water bodies where wind-induced currents and waves are important. In the model, the bottom shear stresses induced by currents and waves were calculated, and the processes of resuspension (erosion), deposition, settling, etc. were considered. This model was first verified by a simple test case consisting of the movement of a non-conservative tracer in a prismatic channel with uniform flow, and the model output agreed well with the analytical solution. Then it was applied to Deep Hollow Lake, a small oxbow lake in Mississippi. Simulated sediment concentrations were compared with available field observations, with generally good agreement. The transport and resuspension processes of cohesive sediment due to wind-induced current and wave in Deep Hollow Lake were also discussed.  相似文献   

6.
7.
8.
张风菊  薛滨  姚书春 《湖泊科学》2019,31(6):1770-1782
湖泊沉积物碳埋藏及其驱动机制是陆地生态系统碳循环及全球变化研究的热点问题之一,但以往湖泊碳循环的研究大多局限于有机碳,较少考虑无机碳的地位和作用.我国干旱-半干旱地区湖泊众多、无机碳储量丰富,在区域碳循环过程中的作用日益突出,因此探讨这些地区湖泊沉积物无机碳埋藏变化对深入理解区域碳循环具有重要意义.本研究通过对内蒙古高原呼伦湖15个沉积岩芯样品无机碳含量(TIC)的测定,结合沉积岩芯210Pb、137Cs年代标尺,分析了1850年以来呼伦湖无机碳埋藏速率时空变化,并揭示了影响呼伦湖无机碳埋藏的主要因素.结果表明,1980s之前,呼伦湖无机碳含量总体维持在相对稳定的低值,1980s之后开始快速增加,且近百年来呼伦湖平均无机碳含量在不同湖区差异不显著.1850年以来呼伦湖无机碳埋藏速率变化范围约为7.10~74.29 g/(m2·a),平均值约为36.15 g/(m2·a),且大体上可分为3个阶段,即1900s以前相对稳定的低值阶段、1900s-1950s期间的快速增加阶段以及1950s以来的波动增加阶段,各阶段无机碳埋藏速率平均值分别约为10.40、26.29和41.00 g/(m2·a).空间上,呼伦湖无机碳埋藏速率整体表现为中部高、南北两端低的分布格局,这可能与湖心水动力条件相对稳定,有利于碳酸盐沉积有关.此外,呼伦湖无机碳埋藏速率与湖区温度变化呈显著正相关,而与周边人类活动影响关系不明显,表明在未来全球变暖背景下,呼伦湖无机碳埋藏速率将进一步增加,湖泊在区域碳循环中的作用将更加显著.  相似文献   

9.
This study combined water- and sediment flux measurements with mass balances of dissolved gas and inorganic matter to determine the importance of pelagic and benthic processes for whole-system metabolism in a eutrophic fluvial lake. Mass balances of dissolved O2, inorganic carbon (DIC), nitrogen (DIN), phosphorous (SRP), particulate N (PN) and P (PP) and Chl a were calculated at a nearly monthly frequency by means of repeated sampling at the lake inlet and outlet. Simultaneously, benthic fluxes of gas and nutrients, including denitrification rates, and the biomass of the dominant pleustophyte (Trapa natans) were measured, and fluxes of O2 and CO2 across the water–atmosphere interface were estimated from diel changes in outlet concentrations. On an annual scale, Middle Lake exhibited CO2 supersaturation, averaging 313% (range 86–562%), but was autotrophic with a net O2 production (6.35 ± 2.05 mol m−2 y−1), DIC consumption (−31.18 ± 18.77 mol m−2 y−1) and net export of Chl a downstream (8.38 ± 0.95 mol C m−2 y−1). Phytoplankton was the main driver of Middle Lake metabolism, with a net primary production estimated at 33.24 mol O2 m−2 y−1, corresponding to a sequestration of 4.18 and 0.26 mol m−2 y−1 of N and P, respectively. At peak biomass, T. natans covered about 18% of Middle Lake’s surface and fixed 2.46, 0.17 and 0.02 mol m−2 of C, N and P, respectively. Surficial sediments were a sink for O2 (−14.47 ± 0.65 mol O2 m−2 y−1) and a source of DIC and NH4 + (18.84 ± 2.80 mol DIC m−2 y−1 and 0.83 ± 0.16 mol NH4 + m−2 y−1), and dissipated nitrate via denitrification (1.44 ± 0.11 mol NO3  m−2 y−1). Overall, nutrient uptake by primary producers and regeneration from sediments were a minor fraction of external loads. This work suggests that the creation of fluvial lakes can produce net autotrophic systems, with elevated rates of phytoplanktonic primary production, largely sustained by allochtonous nutrient inputs. These hypereutrophic aquatic bodies are net C sinks, although they simultaneously release CO2 to the atmosphere.  相似文献   

10.
Using sediment traps, we aimed to elucidate the temporal and spatial variations in sediment fluxes in large and shallow Lake Peipsi, over the May to October 2011 period, and analyze the factors behind those variations. The effects of weather factors (mean and maximum wind velocity, water level and water temperature) on sediment resuspension and the concentrations of suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and chlorophyll a (Chl a) were investigated. Moreover, the internal loading of TP due to sediment resuspension was determined. The sediment resuspension rates were significantly higher in the shallower waters than in the deeper parts of the lake. Resuspension was a major factor in sedimentation dynamics of the lake, which is presently subject to eutrophication. The rates of sediment resuspension followed the same pattern as gross sedimentation during the study period, and their respective values differed significantly between sampling dates. The highest resuspension rates were observed in September (mean 55.4 g dw m?2 day?1), when the impacts of wind events were particularly pronounced. Weather factors that were recorded approximately 2 weeks before water and sediment sampling affected the gross sedimentation and sediment resuspension. The water quality variables of SS, TP, SRP, Chl a were similarly affected. During the study, TP concentrations of the water were mainly determined by the resuspension of sediments containing a large pool of organic material. Although internal loading of TP due to resuspension was several times greater than external loading, external loading determines the amount of phosphorus that enters the lake and can be resuspended.  相似文献   

11.
12.
The purposes of this study were to assess if Lake Apopka (FL, USA) was autotrophic or heterotrophic based on the partial pressure of dissolved carbon dioxide (pCO2) in the surface water and to evaluate factors that influence the long-term changes in pCO2. Monthly average pH, alkalinity and other limnological variables collected between 1987 and 2006 were used to estimate dissolved inorganic carbon (DIC), pCO2 and CO2 flux between surface water and atmosphere. Results indicated that average pCO2 in the surface water was 196 μatm, well below the atmospheric pCO2. Direct measurements of DIC concentration on three sampling dates in 2009 also supported pCO2 undersaturation in Lake Apopka. Supersaturation in CO2 occurred in this lake in only 13% of the samples from the 20-year record. The surface-water pCO2 was inversely related to Chl a concentrations. Average annual CO2 flux was 28.2 g C m−2 year−1 from the atmosphere to the lake water and correlated significantly with Chl a concentration, indicating that biological carbon sequestration led to the low dissolved CO2 concentration. Low pCO2 and high invasion rates of atmospheric CO2 in Lake Apopka indicated persistent autotrophy. High rates of nutrient loading and primary production, a high buffering capacity, a lack of allochthonous loading of organic matter, and the dominance of a planktivorous–benthivorous fish food web have supported long-term net autotrophy in this shallow subtropical eutrophic lake. Our results also showed that lake restoration by the means of nutrient reduction resulted in significantly lower total phosphorus (TP) and Chl a concentrations, and higher pCO2.  相似文献   

13.
Biologically configured ββ-hopanes, geologically configured αβ-hopanes and the biogenic hopenes were determined in dated sediment cores from Lake Fuxian in SW China and Lake Changdang in Eastern China in order to investigate anthropogenic influences on the abundance, composition and provenance of hopanoid hydrocarbons in lake sediments. Based on the results, hopenes were prevalent, with maximum values reaching 148.9 μg g−1 TOC in sediments of Lake Fuxian, an oligotrophic deep lake (average depth 89.6 m), where the long water column provided ample potential for the growth of hopene-producing bacteria especially the cyanobacteria. Sediment hopenes have diminished in abundance to values of 13.4–78.5 μg g−1 TOC in Lake Changdang, a eutrophic shallow (average 0.8–1.2 m) body, reflecting comparatively reduced importance of nutrient level on hopene production. Historical trends in hopenes input to the sediments of each lake are strongly dependent on nutrient status. During the last few decades, human-induced eutrophication has greatly boosted bacterial production, enhancing the accumulation of hopenes in sediments. Inputs of petroleum-derived αβ-hopanes were exceptionally high (average 71.2 μg g−1 TOC) in post-1968 sediments from Lake Changdang, their increase coinciding with the advent and acceleration of petroleum product use around the lake, in particular by fishing boats. Lake Fuxian on the other hand, has undergone slower economic development and the appearance of petroleum-derived αβ-hopanes in sediments was delayed to 1990 since when the average value has been 27.1 μg g−1 TOC. The abundance of αβ-hopanes in Lake Changdang has created a marked decrease in the relative contribution of hopenes to total hopanoids since 1968. Conversely, the amounts of αβ-hopanes introduced to Lake Fuxian since 1990 has yet to yield a clear change in the overall proportion of hopenes, but the abundance of ββ-hopanes has declined relative to total hopanoid levels for the period.  相似文献   

14.
15.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

16.
The downstream ecological consequences of two controlled “free flow” flushing operations designed to remove sediments accumulated in an alpine reservoir are described. The main objectives of the study were (a) to verify to what extent the suspended solid concentration (SSC) in the receiving water course can be controlled by flushing operations, (b) to determine the biological consequences of flushing operations, and (c) to produce technical guidelines for the future planning and monitoring of these activities. We found that the flushing of large volumes of accumulated sediment had clear effects on the stream ecosystem due to the unpredictability of short duration SSC peaks (70–80 g L−1) and the high average SSC (4–5 g L−1) within flushing periods. The main impacts were decreased fish densities (up to 73%) and biomass (up to 66%). A greater mortality recorded for juveniles will likely result in long-term impairment of the age-structures of future fish populations. The zoobenthic assemblages, despite exhibiting a drastic reduction in abundance following the first floods, showed substantial recovery within 3 months of the beginning of flushing operations. Regular sediment removal by yearly flushing is recommended in order to avoid SSC peaks and to facilitate the control of scouring effects caused by the water used to wash out sediments. We also recommend maximum allowable SSCs of 10 g L−1 (daily average) and 5 g L−1 (overall average) for flushing operations carried out in similar environmental contexts.  相似文献   

17.
To quantify the contribution of hyporheic community respiration to whole running-water ecosystem respiration in a cultural landscape setting, we studied the vertical hydraulic exchange in riffle–pool sequences of the River Lahn (Germany). We used flow through curves from four tracer experiments to estimate flow velocities in the surface and subsurface water. Generally, vertical exchange velocities were higher in riffle sections and a high temporal variability was observed (range of values 0.11–1.08 m day−1). We then used (1) the exchange velocities and (2) time series of dissolved oxygen concentration in surface and subsurface water to calculate hyporheic respiration. Hyporheic respiration was estimated in a range of 10–50 mg O2 m−3 day−1 for the upper sediment layer (first 20 cm). It was much lower in the deeper sediment layer (20–40 cm), ranging from 0 to 10 mg Om−3 day−1 (volumes are volumes of interstitial water; the average porosity was 20%). We determined primary production and respiration of the biofilm growing on the sediment by modelling dissolved oxygen concentration time series for a 2,450 m long stream reach (dissolved oxygen concentrations with diurnal variations from 8 to 16 mg L−1). Modelled respiration rates ranged from 2 to 21 g Om2 day−1. All information was integrated in a system analysis with numerical simulations of respiration with and without sediments. Results indicated that hyporheic respiration accounted for 6 to 14% of whole ecosystem respiration. These values are much lower than in other whole system respiration studies on more oligotrophic river systems.  相似文献   

18.
太湖的泥沙与演变   总被引:2,自引:2,他引:0  
吴小根 《湖泊科学》1992,4(3):54-60
历史时期,太湖是不断扩展的,其平均扩展速率为0.37km~2/a。据沙量平衡分析与计算表明。因湖岸崩塌和太湖水系的输沙作用,近期太湖的泥沙淤积量为9.28×10~5t/a.泥沙数量虽然不大,但经过长期的积累,对太湖演变具有深刻影响。就自然演变趋势而言,近期太湖面积仍以0.168km~2/a的速率扩大,容积则以3.95×10~5m~3/a的速率减小,太湖正进一步向浅平方向演变。然而,因围湖造田,建国以来,太湖的面积则以4.58km~2/a的速率在减小。  相似文献   

19.
This study examines the effect of drawdown on the timing and magnitude of suspended solids and associated phosphorus export from a 12 ha reservoir located in an urbanized watershed in southern Ontario, Canada. Water level in Columbia Lake was lowered by 1·15 m over a 2‐week period in November 2001. The total phosphorus (TP) concentrations ranged from 63 to 486 µg L?1 in Columbia Lake and 71 to 373 µg L?1 at its outflow. All samples exceeded the Provincial Water Quality Objective of 30 µg TP L?1. Outflow concentrations of suspended solids and TP increased significantly with decreasing lake level and were attributed to the resuspension of cohesive bottom sediments that occurred at a critical threshold lake level (0·65 m below summer level). Suspended solids at the outflow consisted of flocculated cohesive materials with a median diameter (D50) of c. 5 µm. Particulate organic carbon accounted for 8·5% of the suspended solids export by mass. A total mass of 18·5 t of suspended solids and 62·6 kg TP was exported from Columbia Lake, which represents a significant pulse of sediment‐associated P to downstream environments each autumn during drawdown. The downstream impacts of this release can be minimized if the water level in Columbia Lake is lowered no more than 0·5 m below summer levels. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The results of biogeochemical and microbiological studies of three small lakes in southwestern Arkhangelsk province are presented. The lakes differ in their morphometric characteristics, thermal and oxygen regimes, and the extent of anthropogenic impact they experience. In the periods of summer and winter stratification, anaerobic water layers with higher phosphates, ammonium, and sulfide sulfur (hydrogen sulfide) are found to form in the bottom horizon of deep-water zones of the lakes. The highest concentrations of sulfide sulfur (150–210 μg dm−3) were recorded in the shallow Beloe Lake during winter low-water period, while in summer, sulfide concentration did not differ from those obtained in other lakes (∼10 μg dm−3). The abundance of sulfate-reducing bacteria in lake bottom sediments varied from 10 to 100000 cell cm−3, and the rate of sulfate reduction process varied from 29 to 3746 μg S dm−3 day−1. Seasonal variations were revealed in hydrogen sulfide distribution over the water column and in the rate of sulfate reduction process in the upper horizons of bottom sediments in the examined lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号