首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the study of heat extraction by circulating water in a fracture embedded in geothermal reservoir, the heat conduction in the reservoir is typically assumed to be one dimensional and perpendicular to the fracture. In this paper, we demonstrate that by an integral equation formulation utilizing Green's function, the multi‐dimensional heat flow in the reservoir can be modelled. In the resulting numerical solution system, the discretization of reservoir geometry is entirely eliminated, leading to a much more efficient scheme. The multi‐dimensional heat conduction effect as compared to its one‐dimensional simplification is studied. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The displacement discontinuity method (DDM) is frequently used in geothermal and petroleum applications for modeling the behavior of fractures in linear‐elastic rocks. The DDM requires O(N2) memory and O(N3) floating point operations (where N is the number of unknowns) to construct the coefficient matrix and solve the linear system of equations by direct methods. Therefore, the conventional implementation of the DDM is not computationally efficient for very large systems of cracks, often limiting its application to small‐scale problems. This work presents an approach for solving large‐scale fracture problems using the fast multipole method (FMM). The approach uses both the DDM and a kernel‐independent version of the FMM along with a preconditioned generalized minimal residual algorithm to accelerate the solution of linear systems of equations using desktop computers. Using the fundamental solutions for constant displacement discontinuity in a two‐dimensional elastic medium, several numerical examples involving fracture networks representing fractured reservoirs are treated. Numerical results show good agreement with analytical solutions and demonstrate the efficiency of the FMM implementation of the DDM for large‐scale simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The present paper proposes a new family of multiscale finite volume methods. These methods usually deal with a dual mesh resolution, where the pressure field is solved on a coarse mesh, while the saturation fields, which may have discontinuities, are solved on a finer reservoir grid, on which petrophysical heterogeneities are defined. Unfortunately, the efficiency of dual mesh methods is strongly related to the definition of up-gridding and down-gridding steps, allowing defining accurately pressure and saturation fields on both fine and coarse meshes and the ability of the approach to be parallelized. In the new dual mesh formulation we developed, the pressure is solved on a coarse grid using a new hybrid formulation of the parabolic problem. This type of multiscale method for pressure equation called multiscale hybrid-mixed method (MHMM) has been recently proposed for finite elements and mixed-finite element approach (Harder et al. 2013). We extend here the MH-mixed method to a finite volume discretization, in order to deal with large multiphase reservoir models. The pressure solution is obtained by solving a hybrid form of the pressure problem on the coarse mesh, for which unknowns are fluxes defined on the coarse mesh faces. Basis flux functions are defined through the resolution of a local finite volume problem, which accounts for local heterogeneity, whereas pressure continuity between cells is weakly imposed through flux basis functions, regarded as Lagrange multipliers. Such an approach is conservative both on the coarse and local scales and can be easily parallelized, which is an advantage compared to other existing finite volume multiscale approaches. It has also a high flexibility to refine the coarse discretization just by refinement of the lagrange multiplier space defined on the coarse faces without changing nor the coarse nor the fine meshes. This refinement can also be done adaptively w.r.t. a posteriori error estimators. The method is applied to single phase (well-testing) and multiphase flow in heterogeneous porous media.  相似文献   

5.
Multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces is described by advection diffusion equations with nonlinear parameters of relative permeability and capillary pressures. The conventional numerical method employs a fully implicit finite volume formulation. The phase-potential-based upwind direction is commonly used in computing the transport terms between two adjacent cells. The numerical method, however, often experiences non-convergence in a nonlinear iterative solution due to the discontinuity of transmissibilities, especially in transition between co-current and counter-current flows. Recently, Lee et al. (Adv. Wat. Res. 82, 27–38, 2015) proposed a hybrid upwinding method for the two-phase transport equation that comprises viscous and gravitational fluxes. The viscous part is a co-current flow with a one-point upwinding based on the total velocity and the buoyancy part is modeled by a counter-current flow with zero total velocity. The hybrid scheme yields C1-continuous discretization for the transport equation and improves numerical convergence in the Newton nonlinear solver. Lee and Efendiev (Adv. Wat. Res. 96, 209–224, 2016) extended the hybrid upwind method to three-phase flow in the presence of gravity. In this paper, we present the hybrid-upwind formula in a generalized form that describes two- and three-phase flows with viscous, gravity, and capillary forces. In the derivation of the hybrid scheme for capillarity, we note that there is a strong similarity in mathematical formulation between gravity and capillarity. We thus greatly utilize the previous derivation of the hybrid upwind scheme for gravitational force in deriving that for capillary force. Furthermore, we also discuss some mathematical issues related to heterogeneous capillary domains and propose a simple discretization model by adapting multi-valued capillary pressures at the end points of capillary pressure curves. We demonstrate this new model always admits a consistent solution that is within the discretization error. This new generalized hybrid scheme yields a discretization method that improves numerical stability in reservoir simulation.  相似文献   

6.
In the numerical simulation of heat extraction by circulating water in a fracture embedded in geothermal reservoir, the heat conduction in the reservoir is typically assumed to be one‐dimensional and perpendicular to the fracture in order to avoid the discretization of the three‐dimensional reservoir geometry. In this paper we demonstrate that by utilizing the integral equation formulation with a Green's function, the three‐dimensional heat flow in the reservoir can be modelled without the need of discretizing the reservoir. Numerical results show that the three‐dimensional heat conduction effect can significantly alter the prediction of heat extraction temperature and the reservoir life as compared to its one‐dimensional simplification. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
8.
渗透率是表征瓦斯流动的重要参数,为保证煤矿瓦斯安全高效抽采,有必要探究距抽采井筒不同位置处煤层瓦斯渗流演化特征。然而,瓦斯抽采过程中伴随有效应力、煤基质对瓦斯的吸附/解吸能力以及煤储层温度的不断变化,甚至出现抽采损伤,使得煤层瓦斯运移行为异常复杂。为探究抽采过程的煤层瓦斯渗流特性,在圆柱坐标系下,考虑压力场与温度场变化对煤储层渗透率的影响,构建温度影响的孔隙压力时空演化函数,据此建立应力与温度作用下的煤储层渗透率模型。结果表明:建立的模型能合理描述沿抽采井筒孔隙压力的演化规律以及瓦斯的运移特性,即在恒定外应力的条件下,随抽采时间增加,不同位置处孔隙压力先降低后变化平缓,煤储层渗透率先降低后升高;此外,同一煤储层位置处,考虑温度比不考虑温度的渗透率计算值更低;通过讨论发现,随抽采时间增加,根据裂隙压缩与基质收缩对渗透率演化的不同效应,设置合理的负压抽采方式可提高瓦斯抽采量。   相似文献   

9.
This paper presents a u‐p (displacement‐pressure) semi‐Lagrangian reproducing kernel (RK) formulation to effectively analyze landslide processes. The semi‐Lagrangian RK approximation is constructed based on Lagrangian discretization points with fixed kernel supports in the current configuration. As a result, it tracks state variables at discretization points while allowing extreme deformation and material separation that is beyond the capability of Lagrangian formulations. The u‐p formulation following Biot theory is incorporated into the formulation to describe poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to ensure stability of the domain integration and kernel contact algorithms to model contact between bodies are introduced in the u‐p semi‐Lagrangian RK formulation. The proposed method is verified with several numerical examples and validated with an experimental result and the field data of an actual landslide.  相似文献   

10.
采用二维水深平均方程组作为控制方程,利用边界拟合法进行坐标变换,采用有限体积法计算反调节水库的流场。在计算中,由于已知上游泵站抽水流量及下游枢纽供水流量,且上下游均找不到水位流量关系,上下游边界均为流速边界条件,没有压力边界条件,解不惟一,所以采用全水库水量平衡方程作为补充方程来补充定解条件。  相似文献   

11.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The characteristic relationships among relative permeability (K r ), saturation (S) and capillary pressure (P) of NAPLs are the important constitutive laws to simulate the NAPLs flow in the subsurface. In this study, a micro model was used to obtain the values of permeability, saturation for the multi-phase flow of five fluid-pairs. The perspective micro model allows one to clearly observe the multiphase flow and allow this study to precisely measure the fluid saturation by digital image analysis. The experimental results showed hysteresis phenomenon of relative permeability versus saturation and that was not interpreted by previous studies. By carefully examining the recorded images, this study found that the degree of the connectivity for the micro channel occupied by wetting phase fluid could influence the relative permeability. Therefore, for the same saturation, the relative permeability in the imbibition is higher than that in the drainage. The results of the K r S experiments for five fluid-pairs also showed that the residual saturation of wetting phase fluid decreased with the wettability increasing but increased with the interfacial tension increasing. Those interpretations and experimental results are valuable references for groundwater remediation and oil reservoir development.  相似文献   

13.
In this paper, we present a computational framework for the simulation of coupled flow and reservoir geomechanics. The physical model is restricted to Biot’s theory of single-phase flow and linear poroelasticity, but is sufficiently general to be extended to multiphase flow problems and inelastic behavior. The distinctive technical aspects of our approach are: (1) the space discretization of the equations. The unknown variables are the pressure, the fluid velocity, and the rock displacements. We recognize that these variables are of very different nature, and need to be discretized differently. We propose a mixed finite element space discretization, which is stable, convergent, locally mass conservative, and employs a single computational grid. To ensure stability and robustness, we perform an implicit time integration of the fluid flow equations. (2) The strategies for the solution of the coupled system. We compare different solution strategies, including the fully coupled approach, the usual (conditionally stable) iteratively coupled approach, and a less common unconditionally stable sequential scheme. We show that the latter scheme corresponds to a modified block Jacobi method, which also enjoys improved convergence properties. This computational model has been implemented in an object-oriented reservoir simulator, whose modular design allows for further extensions and enhancements. We show several representative numerical simulations that illustrate the effectiveness of the approach.  相似文献   

14.

A primal C0-conforming virtual element discretization for the approximation of the bidimensional two-phase flow of immiscible fluids in porous media using general polygonal meshes is discussed. This work investigates the potentialities of the Virtual Element Method (VEM) in solving this specific problem of immiscible fluids in porous media involving a time-dependent coupled system of non-linear partial differential equations. The performance of the fully discrete scheme is thoroughly analysed testing it on general meshes considering both a regular problem and more realistic benchmark problems that are of interest for physical and engineering applications.

  相似文献   

15.
Brenner  K.  Chorfi  N.  Masson  R. 《Computational Geosciences》2022,26(1):147-169

This work deals with sequential implicit schemes for incompressible and immiscible two-phase Darcy flows which are commonly used and well understood in the case of spatially homogeneous capillary pressure functions. To our knowledge, the stability of this type of splitting schemes solving sequentially a pressure equation followed by the saturation equation has not been investigated so far in the case of discontinuous capillary pressure curves at different rock type interfaces. It will be shown here to raise severe stability issues for which stabilization strategies are investigated in this work. To fix ideas, the spatial discretization is based on the Vertex Approximate Gradient (VAG) scheme accounting for unstructured polyhedral meshes combined with an Hybrid Upwinding (HU) of the transport term and an upwind positive approximation of the capillary and gravity fluxes. The sequential implicit schemes are built from the total velocity formulation of the two-phase flow model and only differ in the way the conservative VAG total velocity fluxes are approximated. The stability, accuracy and computational cost of the sequential implicit schemes studied in this work are tested on oil migration test cases in 1D, 2D and 3D basins with a large range of capillary pressure parameters for the drain and barrier rock types. It will be shown that usual splitting strategies fail to capture the right solutions for highly contrasted rock types and that it can be fixed by maintaining locally the pressure saturation coupling at different rock type interfaces in the definition of the conservative total velocity fluxes. The numerical investigation of the sequential schemes is also extended to the widely used finite volume Two-Point Flux Approximation spatial discretization.

  相似文献   

16.
In this paper we consider the numerical solution of a coupled geomechanics and a stress-sensitive porous media reservoir flow model. We combine mixed finite elements for Darcy flow and Galerkin finite elements for elasticity. This work focuses on deriving convergence results for the numerical solution of this nonlinear partial differential system. We establish convergence with respect to the L 2-norm for the pressure and for the average fluid velocity and with respect to the H 1-norm for the deformation. Estimates with respect to the L 2-norm for mean stress, which is of special importance since it is used in the computation of permeability for poro-elasticity, can be derived using the estimates in the H 1-norm for the deformation. We start by deriving error estimates in a continuous-in-time setting. A cut-off operator is introduced in the numerical scheme in order to derive convergence. The spatial grids for the discrete approximations of the pressure and deformation do not need be the same. Theoretical convergence error estimates in a discrete-in-time setting are also derived in the scope of this investigation. A numerical example supports the convergence results.  相似文献   

17.
Wellbore flow and interactions between wells and the reservoir can be complex. Accurate modeling of these behaviors is especially important for multilateral and other advanced wells. This paper describes a new scalable linear solver for flow simulation of detailed reservoir models with advanced wells and well groups. A general purpose research simulator serves as the computational platform, in which a multisegment well (MsWell) model is used to describe wellbore flow. In the MsWell model, the wellbore is discretized into a number of segments. Hence, the MsWell model adds a large number of equations and unknowns, which are fully coupled to the reservoir model. Operating constraints on groups of wells add one more level of complexity to the system. The new linear solver is a generalized two-stage constrained pressure residual preconditioner. A global pressure system is obtained algebraically in the first stage. The system represents the pressure coupling between the reservoir and wells accurately. The well groups are disaggregated into individual multisegment wells, which then are further reduced to a standard well-like form. The two-stage scheme serves as the inner loop of a generalized minimum residual solver. Algebraic multigrid is used to compute the first-stage pressure solution; a special block-based incomplete lower–upper preconditioner is used for the second stage. We demonstrate the superior performance of this new solver compared with state-of-the-art methods using a variety of highly detailed reservoir models with complex wells and well groups.  相似文献   

18.
The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The main methods of coalbed methane(CBM) development are drainage and depressurization, and a precise prediction of coal reservoir pressure is thus crucial for the evaluation of reservoir potentials and the formulation of reasonable development plans. This work established a new reservoir pressure prediction model based on the material balance equation(MBE) of coal reservoir, which considers the self-regulating effects of coal reservoirs and the dynamic change of equivalent drainage area(EDA). According to the proposed model, the reservoir pressure can be predicted based on reservoir condition data and the actual production data of a single well. Compared with traditional reservoir pressure prediction models which regard EDA as a fixed value, the proposed model can better predict the average pressure of reservoirs. Moreover, orthogonal experiments were designed to evaluate the sensitivity of reservoir parameters on the reservoir pressure prediction results of this proposed model. The results show that the saturation of irreducible water is the most sensitive parameter, followed by Langmuir volume and reservoir porosity, and Langmuir pressure is the least sensitive parameter. In addition, the pressure drop of reservoirs is negatively correlated with the saturation of irreducible water and the Langmuir volume, while it is positively correlated with porosity. This work analyzed the reservoir pressure drop characteristics of the CBM wells in the Shizhuangnan Block of the Qinshui Basin, and the results show that the CBM reservoir depressurization can be divided into three types, i.e., rapidly drop type, medium-term stability type, and slowly drop type. The drainage features of wells were reasonably interpreted based on the comprehensive analysis of the reservoir depressurization type; the latter was coupled to the corresponding permeability dynamic change characteristics, eventually proving the applicability of the proposed model.  相似文献   

20.
A new procedure based on the approximation to the total normal pressure along the slip surface is developed to compute the factor of safety of slopes for slip surfaces of all shapes. By taking the whole sliding body, instead of an individual slice, as the loaded object, all the equilibrium equations are formulated according to the three‐moment equilibrium conditions rather than the two force equilibrium conditions and one‐moment equilibrium condition. The system of nonlinear equations deduced in this way is well‐scaled and enjoys excellent numerical properties such as the existence of solution with a positive factor of safety, a nearly unlimited scope of convergence and a rapid convergence rate associated with the Newton method. In the case of ?u =0—the situation where no drainage and no consolidation are involved, furthermore, the system has a unique solution and the factor of safety has an explicit expression. Some typical examples are analyzed to demonstrate the numerical properties of the proposed procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号