首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

2.
In southern Italy, analysis of fault slip data sets, in particular from Quaternary formations, provides evidence for a recent change of the stress field. During the Early Pleistocene, the horizontal maximum stress axes were ENE-WSW trending. The deformation was ENE-WSW compression near the front of the chain, and NNW-SSE extension close to the back-arc basin. Some time after the Early Pleistocene, the direction of the largest horizontal stress axes changed to northwest-southeast. Only extensional deformation (σ2, NW-SE trending; σ3, NE-SW trending) is observed for this phase and focal mechanisms indicate that it is still active. This NE-SW extension invaded areas previously affected by compression or NNW-SSE extension and coincides with major uplift of Pleistocene marine sediments in the chain and the foredeep up to 700 m above sea level. This change in the stress regime corresponds to the end of accretion processes that had prevailed since the Middle-Late Miocene. As a consequence of this discovery of a recent regional stress and deformational style change, the present-day normal and strike-slip faulting earthquake focal mechanisms in the Southern Apennines should not be considered representative of Tyrrhenian Sea opening and Apennines accretion.  相似文献   

3.
The present kinematic and dynamic analysis of large-scale strike-slip faults, which enabled the formation of a collage of Altai terranes as a result of two collisional events. The Late Devonian–Early Carboniferous collision of the Gondwana-derived Altai-Mongolian terrane and the Siberian continent resulted in the formation of the Charysh–Terekta system of dextral strike-slip faults and later the Kurai and Kuznetsk–Teletsk–Bashkauss sinistral strike-slip faults. The Late Carboniferous–Permian collision of the Siberian and Kazakhstan continents resulted in the formation of the Chara, Irtysh and North-East sinistral strike-slip zones. The age of deformation of both collisional events becomes younger toward the inner areas of the Siberian continent. In the same direction the amount of displacement of strike-slip faulting decreases from several thousand to several hundred kilometers. The width of the Late Paleozoic zone of deformation reaches 1500 km. These events deformed the accretion-collision continental margins and their primary paleogeographic pattern.  相似文献   

4.
The interpretation of newly released commercial 2D reflection seismic data in the Kattegat area, Denmark, has provided us with a better understanding of the Palaeozoic tectonic processes along the Tornquist Fault Zone. A Base Palaeozoic time structure map, a Lower Palaeozoic TWT isopach map, a “true” Lower Palaeozoic TWT isopach map, an Upper Carboniferous/Lower Permian syn-rift TWT isopach map, a Top pre-Zechstein time structure map and a Zechstein combined TWT isopach and Palaeogeography map have been generated. The uniform Lower Palaeozoic sequence thickness in the Kattegat, both inside and outside the Tornquist Zone indicates only minor lateral movements if any, whereas the extensive Upper Silurian sequence, increasing in thickness to the north, indicates a relatively fast regional subsidence. The Base Palaeozoic time structure map and the Late Palaeozoic syn-rift isopach map show a clear Late Palaeozoic extension in the area. The syn-rift isopach map, in combination with the time-equivalent opening of the Skagerrak graben at right angles to the Tornquist Zone in the Kattegat, indicates that this extensional tectonic event had a dextral slip component. Measurements on internal extensional faults in the Tornquist Zone, give a minimum right-lateral displacement of 10.4 km. The footwall blocks were deeply eroded during the Early Permian rifting, and at Zechstein times the area became a peneplane. The Tornquist Zone was later exposed to several tectonic phases, where dextral slip played a role, indicated by the “push up” and “pull down” structures caused by restraining and releasing bends of the Børglum Fault. The dextral displacement along the Børglum Fault since the beginning of the Permian is in the order of 5–7 km based on the displacement of a Lower Palaeozoic local depocentre. Early Permian depocentres and faults, which gives a total amount of right-lateral displacement since the Early Palaeozoic in the order of 15–20 km. The continuously repeated tectonic episodes along the Tornquist Zone throughout most of the Phanerozoic, show that the zone was easily reactivated, implying deep-seated basement faults. The Tornquist Zone can be seen as a “buffer zone”, between continental blocks, whenever changes in the regional stress field are induced.  相似文献   

5.
《Geodinamica Acta》1999,12(3-4):201-211
Three large (kilometric-scale) caves were studied in the Buda hills and the main directions of cave corridors, fault planes and mineralized veins were measured. Different stages of mineralizations are recognised: calcite scaleno-hedrons, baryte, silica, gypsum. New investigations of fluid inclusions in the baryte suggest a crystallization temperature of 50 °C and a freshwater fluid source. Microtectonic analysis allows the reconstruction of the successive tectonic events: (1) a NE-SW extensional phase at the Late Eocene-Early Oligocene limit (phase I), (2) a strike-slip phase with NW-SE compression and NE-SW extension during the Late Oligocene-Early Miocene (phase II), (3) a NW-SE transtensional phase (phase III) and finally (4) a NE-SW extensional phase of Quaternary age (phase IV). The major phase is the strike-slip one, characterized by an important dextral strikeslip zone: the Ferenc-hegy zone.  相似文献   

6.
新疆东准噶尔地区地处阿尔泰、准噶尔和东天山等山系和构造单元的结合部位, 是研究中亚造山带(或称北亚造山区)构造演化的关键地区。以往的研究多集中于东准噶尔的岩石组合和地球化学组成, 相对缺乏构造变形尤其是中小尺度构造变形的研究。初步研究发现东准噶尔分布着大量的中基性暗色岩墙, 它们是后期岩浆侵入到前期构造裂隙中的产物, 可以从时空两个方面为构造裂隙的研究提供制约。本文结合地质资料和高分辨率遥感影像解译, 在琼河坝岛弧带中的和尔赛岩体(早泥盆世)中识别出来了874个暗色岩墙(晚石炭世-早二叠世)片段, 它们的走向以北西西-南东东向为主, 另外还有少数北东-南西和北西-南东走向的岩墙。通过岩墙的宏观变形特征可以推测, 北西西-南东东走向的岩墙形成于压张性裂隙之中, 北西-南东走向的岩墙形成于左行张剪裂隙之中, 北东-南西走向的岩墙形成于右行压剪裂隙之中。这些裂隙形成时平面最大主应力为北西西-南东东方向。结合岩体和岩墙的时代, 本文认为在晚泥盆世-早石炭世期间, 和尔赛岩体由于受到北西西-南东东方向的区域挤压作用而产生相应的裂隙, 可能标志着洋盆结束后碰撞作用的发生, 而晚石炭世-早二叠世暗色岩墙的普遍发育可能是后碰撞岩浆活动的标志。  相似文献   

7.
Abstract

Three large (kilometric-scale) caves were studied in the Buda hills and the main directions of cave corridors, fault planes and mineralized veins were measured. Different stages of mineralizations are recognised: calcite scaleno- hedrons, baryte, silica, gypsum. New investigations of fluid inclusions in the baryte suggest a crystallization temperature of 50 °C and a freshwater fluid source. Microtectonic analysis allows the reconstruction of the successive tectonic events: (1) a NE-SW extensional phase at the Late Eocene-Early Oligocene limit (phase I), (2) a strike-slip phase with NW-SE compression and NE-SW extension during the Late Oligocene-Early Miocene (phase II), (3) a NW-SE transten- sional phase (phase III) and finally (4) a NE-SW extensional phase of Quaternary age (phase IV). The major phase is the strike-slip one, characterized by an important dextral strike- slip zone: the Ferenc-hegy zone. © Elsevier, Paris  相似文献   

8.
In the context of the present study the structural pattern in the Western Thessaly Basin (Greece) has been examined, based on structural data collected from the entire study area that were further correlated to the hydrographic network. The structural pattern of the area was revealed from tectonic analysis. Additionally, the topography, stratigraphy and sedimentology of the study area were taken into account. GIS techniques were used to map the spatial distribution of the geological and tectonic features on the topographic relief of the area. The oldest structures are contractional in nature, deformed by normal faulting related to the extensional episodes initiated in Serravallian times. It is inferred that the orientation of the stress field in the area has changed several times: the N-S stress field which was dominant during Late Serravallian times changed to NW-SE (Messinian-Zanclian) up to E-W in Zanclian and subsequently to roughly NNW-SSE (in late Piacencian). The NE-SW stress that was dominant in Pleistocene became N-S in later times. In addition, some changes in orientation are also indicated for the transitional periods of the pre-mentioned extensional episodes, possibly related to local events, or as a block-related deformation. The development of the 7th order streams is probably related to the N-S extensional faulting initiated in Pliocene times, while the dominant direction of the 6th, 5th and 4th order streams is possibly connected with the presence of the NNE-SSW and NW-SE extensional faults. Finally, the lower order streams are probably related to the most recent E-W striking normal faults.  相似文献   

9.
《Geodinamica Acta》1999,12(5):303-319
The South Iceland Seismic Zone (SISZ) is located at the junction of three rift segments in southwestern Iceland. The presence of different types of faulting and of differently orientated subgroups in Upper Pliocene to Holocene formations indicate polyphase tectonism. We measured 736 minor faults at 25 sites. Two types of relationships between stress regimes are represented. The first type, named IDS (inhomogeneous data set), is characterized by the presence of two types of fault mechanisms, normal and strike-slip, consistent with a single direction of extension. The second type, named OSR (opposite stress regimes), is characterized by the presence of perpendicular directions of extensions for a single type (normal or strike-slip) of faulting. Because of contradictory chronological criteria, we infer that the OSR alternated during the brittle tectonic activity of the SISZ. Two stress regimes, primary and secondary, are characterized by directions of extension NW-SE and NE-SW, respectively. The general fracture pattern characterized for the primary stress regime in the SISZ includes NNE-SSW trending right-lateral strike-slip faults, conjugate ENE-WSW trending left-lateral faults and NE-SW normal faults. This distribution is quite consistent with a Riedeltype model of fault pattern in a left-lateral shear zone. The stress states characterized based on analysis of both the earthquake focal mechanisms and the recent faulting show great similarity in terms of stress directions. The main difference is the larger ratio of strike-slip motions representing 71 % of the total population in the case of earthquake focal mechanisms, whereas for the whole set of faults the proportion of strike-slip faulting was 50 %. We explain that a temporal evolution of the tectonic regime in the SISZ region, accompanied by a gradual change in stress field, starts with rift-type pure extension and progressively leads to development of preferentially strike-slip structures in the kinematic context of leftlateral transform motion.  相似文献   

10.
Abstract

The Vestfirdir Peninsula of northwestern Iceland mainly consists of tholeiitic lava flows, 8–14 Ma old, gently dipping to the southeast. A detailed study of strike-slip and normal faulting allowed identification of two main paleostress regimes. Two sets of normal faults were recognized. The largest set trends ENE-WSW to NNE-SSW; the minor set trends NW-SE to WNW-ESE. Concerning the major extension, the reconstruction of paleostress trajectories shows a gradual change in trend from ESE-WNW, in the northern half of the peninsula, to NNW-SSE to the south. The minor extension also shows a gradual change from NNE-SSW to ENE-WSW trends, from north to south. The nearly constant perpendicularity between the major and minor trends of extension is accounted for by permutation of stress axes within the general pattern of extension related to oceanic rifting. The progressive azimuthal change of the major extension trend, from northeast to southwest across the peninsula, is interpreted as the expression of a change in trend of the extinct Skagi-Snaefells rift, a structure that cannot be reconstructed directly through geological mapping. The average trends of extension in the southern Vestfirdir Peninsula, N150°E, suggest a N60°E trend for the ancient Snaefells rift segment. Likewise, the N100–110°E trends of extension in northern Vestfirdir suggest a N10–20°E trend for the Skagi paleo-rift., © Elsevier, Paris  相似文献   

11.
Abstract

The South Iceland Seismic Zone (SISZ) is located at the junction of three rift segments in southwestern Iceland. The presence of different types of faulting and of differently orientated subgroups in Upper Pliocene to Holocene formations indicate polyphase tectonism. We measured 736 minor faults at 25 sites. Two types of relationships between stress regimes are represented. The first type, named IDS (inhomogeneous data set), is characterized by the presence of two types of fault mechanisms, normal and strike-slip, consistent with a single direction of extension. The second type, named OSR (opposite stress regimes), is characterized by the presence of perpendicular directions of extensions for a single type (normal or strike-slip) of faulting. Because of contradictory chronological criteria, we infer that the OSR alternated during the brittle tectonic activity of the SISZ. Two stress regimes, primary and secondary, are characterized by directions of extension NW-SE and NE-SW, respectively. The general fracture pattern characterized for the primary stress regime in the SISZ includes NNE-SSW trending right-lateral strike-slip faults, conjugate ENE-WSW trending left-lateral faults and NE-SW normal faults. This distribution is quite consistent with a Riedel- type model of fault pattern in a left-lateral shear zone. The stress states characterized based on analysis of both the earthquake focal mechanisms and the recent faulting sow great similarity in terms of stress directions. The main difference is the larger ratio of strike-slip motions representing 71% of the total population in the case of earthquake focal mechanisms, whereas for the whole set of faults the proportion of strike-slip faulting was 50 %. We explain that a témpora evolution of the tectonic regime in the SISZ region, accompanied by a gradual change in stress field, starts with rift-type pure extension and progressively leads to development of preferentially strike-slip structures in the kinematic context of left- lateral transform motion. © Elsevier, Paris  相似文献   

12.
Folding, shearing and fracturing in the Northland Allochthon occurred prior to deposition of the Upper Oligocene-Miocene Akarana Supergroup. Observations on fold vergence indicate that the allochthon moved from NNW to SSE. Part of the pre-Miocene, post-Lower Cretaceous deformation in the autochthonous basement consisted of thrusting and strike-slip faulting with compression trending NE-SW, across Northland Peninsula. NW-SE thrusting followed by NW-SE extension affected the Miocene rocks. NW-SE extension persisted into the Quaternary.  相似文献   

13.
郯庐断裂带(安徽段)及邻区的动力学分析与区域构造演化   总被引:14,自引:3,他引:11  
依据区域构造层次划分,采用构造筛分法,层层深入,层层筛分,确定发生于各个不同时代地层/岩层内的断裂活动的同期及叠加的应力场特征。综合所有的同期应力场特征及辅以叠加的应力场特征来验证,从而确定了一个连续的、完整的断裂活动的应力场演化序列;结合区域构造变形特征分析,阐明郯庐断裂带(安徽段)的构造演化。应力场分析显示:晚三叠-早侏罗世应力场为北北西—南南东或近南北向挤压,属古特提斯构造域,断裂发生同造山走滑;早白垩世早期,应力场为北西—南东向挤压,断裂发生左行走滑运动,中国东部处于西环太平洋构造域;早白垩世晚期—古新世(始新世),区域发生北西—南东向伸展作用,断裂处于伸展断陷作用阶段;新生代,受区域上近东西向的挤压作用影响,断裂发生挤压逆冲兼右行走滑作用。  相似文献   

14.
Mapping based on the interpreted seismic data covering the Abu Gharadig Basin in the northern Western Desert has revealed that the deposition of the Upper Cretaceous succession was controlled by dextral wrench tectonics. This dextral shear accompanied NW movement of the African Plate relative to Laurasian Plate. Structural depth maps of the Cenomanian Bahariya Formation and the Turonian-Coniacian D and A members of Abu Roash Formation display a clear NE-SW anticline dissected by NW-SE normal faults. This anticline represents one of the en echelon folds characterizing the wrench compressional component. The interpreted normal faults reflect the extensional T-fractures associated with the wrenching tectonics. The interaction between the aforementioned NE-SW anticline with the NW-SE extensional faults further confirms the effect of the Upper Cretaceous dextral wrench tectonic. However, the influence of this wrench tectonics was gradually diminishing from the Cenomanian up to the Coniacian times. The NW-SE compressional stress of the dextral wrench compressional component during the Cenomanian up to Coniacian age was greater in NW direction than the SE direction. Three mapped structural closures which are predicted to be potential hydrocarbon traps belonging to the Bahariya Formation and Abu Roash D Member, and are recommended to be drilled in the study area, with potential reservoirs. The regularity of the en echelon array of both anticlines and normal faults within the wrench zones suggests additional closures may be located elsewhere beside the study area.  相似文献   

15.
要通过在TM遥感图像解译和野外观测的基础上,描述了东昆仑断裂带东段活动形迹的组成和活动断层地貌特征,阐述了甘南高原西秦岭地区新近纪拉分盆地的沉积-构造特征,提出了该区东昆仑-秦岭断裂系晚新生代左旋走滑伸展-走滑挤压-走滑伸展的3个阶段的构造变形模式。指出,中新世晚期至上新世早期,东昆仑-秦岭断裂系以左旋走滑伸展活动为主,伴随着西秦岭地区拉分盆地的形成和超基性火山岩群的发育。这期左旋走滑伸展活动向东扩展导致了渭河盆地新近纪引张应力方向由早期的NE-SW向转变为晚期的NW—SE向。上新世晚期以来(约3.4Ma以前),东昆仑-秦岭断裂系以左旋走滑挤压活动为主,导致早期拉分盆地的轻微褶皱变形,走滑挤压活动主要集中在东昆仑东段玛沁-玛曲主断裂带上。该期构造变动持续到早更新世,它的向东扩展产生了广泛的地壳形变效应,包括青藏东缘岷山隆起带的快速崛起、华北地区汾-渭地堑系的形成和发展以及郯庐断裂带右旋走滑活动等。中、晚更新世时期,断裂系以走滑伸展变形为主,主要集中在东昆仑断裂带东段3个分支上,地块向东挤出伴随着顺时针旋转。  相似文献   

16.
《Geodinamica Acta》2013,26(2):131-144
An extensional event affected the southwest Margin of Iberia during Late Triassic to Early Cretaceous times, giving place to the Algarve basin. This basin was subjected to tectonic instability and it became infilled with siliciclastic and carbonate sequences with abundant interspersed volcanic rocks. Normal and strike-slip faults accommodated the deformation in the Algarve basin. The presence of a single flat or listric detachment surface is inferred from the study of hanging-wall structures. The dynamic and kinematic analyses of fault systems in the Spanish exposure of the Algarve basin allow us to establish three extensional phases. 1) A Late Triassic to Hettangian NE-SW directed extension associated with the initial breaking of Pangea and the opening of the Tethys in the eastern Mediterranean. 2) NW-SE extension from the Sinemurian to the Callovian, interpreted as a result of the activity as a sinistral fault of the Azores-Gibraltar transform boundary. 3) Finally, E-W extension during the Late Jurassic and Cretaceous, related to the North Atlantic rifting process.  相似文献   

17.
以渤海湾地区Z油田沙一下生物灰岩油藏为例, 利用岩心、薄片及成像测井等资料, 对天然裂缝特征及控制因素进行研究, 并对裂缝的成因机理进行了分析.研究表明, Z油田沙一下生物灰岩储层主要发育构造裂缝及成岩裂缝两种类型, 其中构造裂缝又分为剪切裂缝及扩张裂缝两类; 大多数构造裂缝为高角度缝, 主要方位为北东-南西向、北西-南东向及近东西向; 裂缝纵向高度一般小于170 cm, 裂缝平面长度主要分布在35 m以内, 裂缝开度主要在100 μm以内; 裂缝的发育受岩性、岩层厚度、断层等地质因素控制.该区构造裂缝主要在始新世-渐新世裂陷中后期北西-南东向引张应力场及东营末期北东东-南西西向反转挤压应力场两期构造应力作用下形成, 其中早期主要形成北东-南西向的正断层型裂缝, 晚期主要形成北东-南西向、北西-南东向的剪切裂缝及近东西向扩张裂缝.  相似文献   

18.
Abstract

A detailed analysis of brittle deformations in the Saharian platform of southern Tunisia is based on studies of fault-slip data sets and joint sets. It allows reconstruction of the Mesozoic paleostress evolution. During the Permo-Triassic, N-S extensions occurred with high late Permian subsidence rates. During the Norian, strike-slip movements reactivated former normal faults. During the Jurassic and the Cretaceous a succession of extensional events was characterized by : (1) a N-S extension which dominated from late Triassic to early Aptian. We relate this extension to the Africa-Eurasia divergence; (2) a ENE-WSW extension during the Cenomanian. We relate this extension to the opening of «he African basins ; (3) a NE-SW Senonian extension that continued during the Cenozoic in the Jeffara and in the Gabes Gulf, during the further evolution of the northern African margin. The various compressional trends recorded in the platform are attributed to Cenozoic events.  相似文献   

19.
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.  相似文献   

20.
Geological mapping, interpreted cross sections, structural analyses and residual thickness maps were used to characterize the evolution of stress setting, structure and stratigraphic distribution of the Chepaizi Uplift, which is a NW-SE trending structure located in the Western Junggar Basin. The NS-trending faults show an important transpressional phase during the Late Permian, as demonstrated by tectonic stress field and stratigraphic thickness variations. A major compressional thrusting and strike-slip phase during the Late Jurassic created a series of NW-SE faults that originated by the large-scale uplift event in the Northern Tianshan. Faults were reactivated as thrust and dextral strike-slip faults. In addition, the angular unconformity observed between Jurassic and Cretaceous provide evidence of this tectonic event. Lots of normal faults indicate that the area records southward tilting and regional derived extensional stress that took place during the Neogene. Before that, thick Early Cenozoic strata are widely deposited. The balanced cross-section highlights the evolution of stress setting and stratigraphic distribution of the Chepaizi Uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号